scholarly journals The involvement of gibberellins in phytochrome-controlled flowering of Pharbitis nil

2014 ◽  
Vol 71 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Halina Kulikowska-Gulewska ◽  
Jan Kopcewicz

The seedlings of <em>Pharbitis nil</em>, a sesitive short-day plant (SDP), were cultivated under special photoperiodic conditions: 72-h-long darkness, 24-h-long white light with low intensity, 24-h-long inductive night. During 24-h-long inductive darkness the total content of gibberellins in cotyledons underwent fluctuations with a maximum at 0 h and 8 h, and a decrease at the end of the dark period. FR light applied at the end of the 24-h-long white-light period inhibited flowering. R light flash and partially exogenous GA3 added on cotyledons could reverse the effect of FR. The seedling growth was not affected by FR and R light irradiation, but was promoted by exogenous GA3 application. The obtained results suggest that gibberellins are involved in photoperiodic control of SDP <em>P. nil</em> flowering. This involvement has nothing in common with participation of gibberellins in the control of the elongation growth of seedlings.

Author(s):  
Tetsuaki Osafune ◽  
Shuji Sumida ◽  
Tomoko Ehara ◽  
Eiji Hase ◽  
Jerome A. Schiff

Changes in the morphology of pyrenoid and the distribution of RuBisCO in the chloroplast of Euglena gracilis were followed by immunoelectron microscopy during the cell cycle in a light (14 h)- dark (10 h) synchronized culture under photoautotrophic conditions. The imrnunoreactive proteins wereconcentrated in the pyrenoid, and less densely distributed in the stroma during the light period (growth phase, Fig. 1-2), but the pyrenoid disappeared during the dark period (division phase), and RuBisCO was dispersed throughout the stroma. Toward the end of the division phase, the pyrenoid began to form in the center of the stroma, and RuBisCO is again concentrated in that pyrenoid region. From a comparison of photosynthetic CO2-fixation with the total carboxylase activity of RuBisCO extracted from Euglena cells in the growth phase, it is suggested that the carboxylase in the pyrenoid functions in CO2-fixation in photosynthesis.


1993 ◽  
Vol 264 (6) ◽  
pp. R1125-R1132 ◽  
Author(s):  
I. Tobler ◽  
P. Franken ◽  
K. Jaggi

Vigilance states, electroencephalogram (EEG) power spectra (0.25-25.0 Hz), and cortical temperature (TCRT) were obtained in nine guinea pigs for 24 h in a 12:12-h light-dark (LD 12:12) schedule. Sleep was markedly polyphasic and fragmented and amounted to 32% of recording time, which is a low value compared with sleep in other rodents. There was 6.8% more sleep in the light period than in the dark period. EEG power density in non-rapid eye movement (NREM) sleep showed no significant temporal trend within the light or the dark period. The homeostatic aspects of sleep regulation, as proposed in the two-process model, can account for the slow-wave activity (SWA) pattern also in the guinea pig: The small 24-h amplitude of the sleep-wakefulness pattern resulted in a small, 12% decline of SWA within the light period. In contrast to more distinctly nocturnal rodents, SWA in the dark period was not higher than in the light period. TCRT showed no difference between the light and the dark period. TCRT in REM sleep and waking was higher than TCRT in NREM sleep. TCRT increased after the transition from NREM sleep to either REM sleep or waking, and decreased in the last minute before the transition and after the transition from waking to NREM sleep. Motor activity measured in six animals for 11 days in constant darkness showed no apparent rhythm in three animals and a significant circadian rhythm in three others. Our data support the notion that guinea pigs exhibit only a weak circadian rest-activity rhythm.


2005 ◽  
Vol 94 (2) ◽  
pp. 968-978 ◽  
Author(s):  
Claudia Prada ◽  
Susan B. Udin ◽  
Allan F. Wiechmann ◽  
Irina V. Zhdanova

To investigate the physiological effects of melatonin receptors in the Xenopus tectum, we have used the fluorescent indicator Fluo-4 AM to monitor calcium dynamics of cells in tectal slices. Bath application of KCl elicited fluorescence increases that were reduced by melatonin. This effect was stronger at the end of the light period than at the end of the dark period. Melatonin increased γ-aminobutyric acid-C (GABAC)–receptor activity, as demonstrated by the ability of the GABAC-receptor antagonists, picrotoxin and TPMPA, to abolish the effects of melatonin. In contrast, neither the GABAA-receptor antagonist bicuculline nor the GABAB-receptor antagonist CGP 35348 diminished the effects of melatonin. RT-PCR analyses revealed expression of the 3 known melatonin receptors, MT1 (Mel1a), MT2 (Mel1b), and Mel1c. Because the effect of melatonin on tectal calcium increases was antagonized by an MT2-selective antagonist, 4-P-PDOT, we performed Western blot analyses with an antibody to the MT2 receptor; the data indicate that the MT2 receptor is expressed primarily as a dimeric complex and is glycosylated. The receptor is present in higher amounts at the end of the light period than at the end of the dark period, in a pattern complementary to the changes in melatonin levels, which are higher during the night than during the day. These results imply that melatonin, acting by MT2 receptors, modulates GABAC receptor activity in the optic tectum and that this effect is influenced by the light–dark cycle.


1999 ◽  
Vol 26 (8) ◽  
pp. 749 ◽  
Author(s):  
Joseph A.M. Holtum ◽  
Klaus Winter

Crassulacean acid metabolism (CAM) was observed in three species of tropical ferns, the epiphytes Microsorium punctatum and Polypodium crassifolium and the lithophyte Platycerium veitchii. Polypodium crassifolium and P. veitchii exhibited characteristics of weak CAM. Although no net nocturnal CO2 uptake was observed, the presence of CAM was inferred from nocturnal increases in titratable acidity of 4.7 and 4.1 µequiv (g fr wt)–1 respectively, a reduction in the rates of net CO2 evolution during the first half of the dark period, and the presence of a CAM-like decrease in net CO2 uptake during the early light period. In M. punctatum net CO2 uptake during the first half of the dark period was accompanied by an increase in titratable acidity of 39.2 µequiv (g fr wt)–1 and a pronounced reduction in net CO2 uptake during the early light period. When water was withheld from P. crassifolium and M. punctatum, net CO2 uptake during the light was reduced markedly but there was no change in the extent or patterns of CO2 exhange in the dark. As a consequence, the proportion of carbon gained due to CO2 fixation in the dark increased from 2.8 and 10% to 63.5 and 49.3%, respectively (100% being net CO2 uptake during the light plus the estimated CO2 uptake during the dark). After 9 days without added water, dark CO2 uptake was responsible for the maintenance of a net 24 h carbon gain in P. crassifolium. Platycerium veitchii, P. crassifolium and M. punctatum exhibited carbon isotope ratios of between –25.9 and –22.6‰ indicating that carbon isotope ratios may not, by themselves, be sufficient for the identification of weak CAM. We suggest that CAM may be more prevalent in tropical epiphytic and lithophytic ferns than currently envisaged.


1994 ◽  
Vol 49 (9-10) ◽  
pp. 607-614 ◽  
Author(s):  
Günter Döhler ◽  
Thomas Biermann

Abstract The marine diatom Ditylum brightwellii (West) Grunow isolated from the Baltic Sea could be synchronized by a light/dark rhythm of 6.5:17.5 h (white light intensity 8 W m-2) at 18 °C and 0.035 vol.% CO2. Content of protein, DNA and RNA increased linearly up to the end of the cell cycle. Pigments (chlorophyll a, chlorophyll c1 + c2, carotenoids) and galactolipids were synthesized in the light period only. A lag phase of 2 h was observed in the biosynthesis of sulphoquinovosyl diacylglycerol and phosphatidylglycerol. Formation of phosphatidylglycerol and phosphatidylcholin continued in the dark period (30% and 28%, respectively). The pattern of major fatty acids (C14:0, C16:1, C16:0, C18:1 and C20:5) varied during the cell cycle of Ditylum.Biosynthesis of acyl lipids was reduced in dependence on the UV-B dose. The most sensitive lipid was digalactosyl diacylglycerol (total inhibition at 585 J m-2), whereas phosphatidylcholin was less affected (20% reduction). UV-B radiation during the dark period had no effect on the lipid and pigment content. Strongest inhibitory effect of UV-B on cell division, synthesis of protein, pigments, sulphoquinovosyl diacylglycerol and phosphatidylglycerol was found after UV-B radiation at the beginning of the cell cycle (0.-2. h). An exposure time at the end of the light period (4.-6. h) led to a marked damage on the synthesis of monogalactosyl diacylglycerol and phosphatidylglycerol. These findings indicate a stage-dependent response of Ditylum to UV-B irradiance. The impact of UV-B resulted in an increase of unsaturated long chained fatty acids (C18, C20) and in a diminution of short chained fatty acids (C14, C16). Content of ATP was not affected by UV-B radiation under the used conditions. The inhibitory effect of UV-B on synthesis of DNA, RNA, protein and acyl lipids was mainly reversible. Results were discussed with reference to UV-B damage on the enzymes involved in the biosynthesis of acyl lipids and by a reduction of available metabolites.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1475 ◽  
Author(s):  
Yamin Li ◽  
Rui Shi ◽  
Haozhao Jiang ◽  
Linyuan Wu ◽  
Yiting Zhang ◽  
...  

Four light treatments (W: white light; EOD-B: end-of-day enhanced blue light; EOD-FR: end-of-day supplementary far-red light; EOD-UV: end-of-day supplementary ultraviolet-A light) were designed to explore the effects of end-of-day (EOD) lightings (30 min before dark period) on leaf color, biomass and phytochemicals accumulation in two lettuce cultivars (Lactuca sativa cv. ‘Red butter’ and ‘Green butter’) in artificial light plant factory. EOD-FR stimulated the plant and shoot biomass of two cultivars, and EOD-B suppressed the growth of ‘Red butter’ but induced higher biomass in ‘Green butter’. EOD lightings generated brighter, greener and yellower leaf in ‘Red butter’ at harvest, but the highest lightness and the deepest redness of ‘Green butter’ leaf were observed in the middle growth stage. ‘Red butter’ had prominent higher contents of chlorophylls and carotenoids, while these pigments showed less sensitivity to the interaction of cultivars and EOD lightings. EOD lightings impeded the accumulation of anthocyanin in two cultivars, except EOD-UV slightly increased the anthocyanin contents in ‘Green butter’. EOD-UV strengthened the antioxidant capability of ‘Green butter’, but EOD lightings had different effects on the antioxidant and nutritional compound contents in two lettuce cultivars.


1960 ◽  
Vol 15 (4) ◽  
pp. 205-213 ◽  
Author(s):  
Erwin Bünning ◽  
Gabriele Joerrens

In Pieris brassicae, diapause is inhibited if long-day conditions are imposed during and immediately after the third molting. The critical daylength is approximately 14 hours. Under short-day conditions with a main light period of 6 or 12 hours’ duration, supplementary light given in the period from 14 to 16 hours after the beginning of the main light period will inhibit diapause. In contrast to this effect of late exposures to light, light given from 1 to 12 hours after the beginning of the main light period promotes diapause. Experiments with extremely long light periods (10—35 hours), but always with a dark period of 10 hours, show that these diurnal fluctuations in quantitative and qualitative responses to light can continue endogenously for several days. Thus, this time-measuring process operates through the mechanism of endogenous diurnal oscillations in just the same way as do photoperiodic reactions in plants.The inhibition of diapause by light in the second half of the diurnal oscillation (under long days or by light interruptions in the dark period) and the promotion by light in the first half (under short days) occur only with light of short wavelengths: ultraviolet, violet, and blue up to about 550 mμ. Yellow and red light act in the opposite fashion, giving diapause inhibition in the first half of the cycle and promotion in the second half. In white light the violet reaction predominates, so that diapause is promoted by short days and inhibited by long days.


1968 ◽  
Vol 19 (6) ◽  
pp. 927 ◽  
Author(s):  
MA Foale

The growth of three coconut cultivars of the tall type from germination up to 17 months of age was compared by growth analysis. These cultivars differ considerably in mean nut size. Within each cultivar a comparison was also made between the growth of seedlings from small, medium, and large nuts. There were considerable differences between cultivars in seedling growth up to 2 months but these differences did not persist. Similarly differences due to nut size within cultivars were recorded at early harvests but had disappeared by 6 months. Thus neither genotype nor nut size had any sustained effect on the plant size. Consumption of endosperm depended on seed size: evidently a lower, compensating net assimilation rate occurred in plants with large nuts to give a similar total supply of assimilate. This suggests that the potential supply of assimilate was not limiting the growth rate. Large nuts transfer dry matter from the endosperm more rapidly than do smaller nuts; hence under unfavourable conditions for photosynthesis, larger nuts may produce larger seedlings. It is suggested that any seedling selection should be done in a favourable nursery environment so that emphasis is placed on differences in seedling vigour due to genetic variation.


Author(s):  
W. P. Paulij ◽  
P. M. J. Herman ◽  
M. E. F. Roozen ◽  
J. M. Denuce

The influence of photoperiodicity on hatching of Sepia officinalis was investigated under different experimental light-dark (LD) conditions. The results are viewed in relation to some relevant properties of the perivitelline fluid (PVF) and the egg capsule during embryonic development. In embryos of S. officinalis the transition from light to dark ap-pears to act as a 'Zeitgeber' or synchronizer. The embryos consistently hatched during periods of darkness, even when the duration of the dark period was short (1–4 h) and replaced part of the natural light period. The hatching rhythm was independent of the embryonic stage at which the experimentwas started. Embryos that developed under a given LD rhythm did not hatch at that rhythm if it was changed or eliminated. In the absence of an external LD rhythm the time to hatching increased. Lack of pigmentation in the egg envelope appeared to reduce the time to hatching. If embryos were exposed to a single dark period of 1–4 h significantly more hatched during darkness while a dark-pulse of ten minutes resulted in no hatching. At the end of embryonic development the egg capsule of S. officinalis becomes thinner due to the expanding PVF. Absence ofthe envelope did not affect embryonic development but dramatically increased mortality and prema hire hatching (96%). Spectrophotometrical investigations indicated that light between 200 and 900 nm is absorbed similarly by the envelope and by female ink. The function of pigmentation in the envelopes remains obscure.


Sign in / Sign up

Export Citation Format

Share Document