RESISTANCE TO WEAR AS A FUNCTION OF THE MICROSTRUCTURE AND SELECTED MECHANICAL PROPERTIES OF MICROALLOYED STEEL WITH BORON

Tribologia ◽  
2016 ◽  
Vol 268 (4) ◽  
pp. 101-114 ◽  
Author(s):  
Łukasz KONAT ◽  
Jerzy NAPIÓRKOWSKI ◽  
Karol KOŁAKOWSKI

The paper presents the structure and the results of abrasive wear resistance tests of XAR®600, TBL PLUS, and B27 steel. As a result of the tests conducted by means of light and scanning microscopy, it has been proven that these types of steel are characterised by subtle differences in their structures, affecting their strength and performance properties. In the delivered condition, all types of steel are characterised by a fine-grained structure with post-martensitic orientation with insets of carbide phases. The structural type of the discussed steel types disclosed in the course of the research, as well as the results of the conducted spectral analyses of the chemical composition, indicate that their properties are shaped in the course of specialist procedures of thermomechanical rolling. According to the above-mentioned test results, it can be concluded that the analysed steel types were designed in compliance with the canons of materials engineering in relation to low-alloy steel resistant to abrasive wear. Due to this, the obtained results of the structural tests of XAR®600, TBL PLUS, and B27 steel were subjected to verification in the course of abrasive wear resistance tests by means of the “spinning bowl” method. The tests, conducted in real soil masses – loamy sand, light clay, and normal clay, compared with the results of hardness measurements, indicated a strict dependence of abrasive wear resistance ratios as a function of structure and the heat treatment condition of the tested types of steel. All the obtained test results were referred to 38GSA steel in a normalised condition.

Tribologia ◽  
2017 ◽  
Vol 273 (3) ◽  
pp. 67-75 ◽  
Author(s):  
Łukasz KONAT ◽  
Jerzy NAPIÓRKOWSKI ◽  
Beata BIAŁOBRZESKA

In the paper, microstructures and the examination results of abrasive-wear resistance of steel grades Brinar 400 and Brinar 500 are presented. It was found on the grounds of light and electron scanning microscopy that these steels are characterised by subtle differences in microstructures, influencing their mechanical and usable properties. In as-delivered condition, the steels have fine-grained structure with post-martensitic orientation, containing few particles of carbide phases. Such microstructures of Brinar steels and the performed chemical analyses indicate that their properties are formed during specialised operations of thermo-mechanical rolling. Generally, it can be said that the examined steels were designed according to the accepted standards of material engineering, related to low-alloy, high-strength, and abrasive-wear resistant martensitic steels. According to the above, the obtained results of structural examinations of Brinar 400 and Brinar 500 steels were referred to real abrasive-wear indices obtained by the spinning bowl method with use of various abrasive soil masses. The tests carried-out in light soil (loamy sand), medium soil (sandy loam), and in heavy soil (loam), as well as hardness measurements showed strict dependence of abrasive-wear indices on microstructures and the heattreatment condition of the examined steels. Examination results of abrasive-wear resistance of Brinar steels were compared with those of steel 38GSA in normalised conditions.


2013 ◽  
Vol 58 (3) ◽  
pp. 973-976 ◽  
Author(s):  
D. Kopyciński ◽  
M. Kawalec ◽  
A. Szczęsny ◽  
R. Gilewski ◽  
S. Piasny

Abstract The resistance of castings to abrasive wear depends on the cast iron abrasive hardness ratio. It has been anticipated that the white cast iron structure will be changed by changing the type of metal matrix and the type of carbides present in this matrix, which will greatly expand the application area of castings under the harsh operating conditions of abrasive wear. Detailed metallographic analysis was carried out to see the structure obtained in selected types of white cast iron, i.e. with additions of chromium and vanadium. The study compares the results of abrasive wear resistance tests performed on the examined types of cast iron.


2005 ◽  
Vol 502 ◽  
pp. 217-224
Author(s):  
Goffredo de Portu ◽  
L. Micele ◽  
D. Prandstraller ◽  
G. Palombarini ◽  
Giuseppe Pezzotti

Multilayered composite specimens consisting of Al2O3 / Al2O3+ 3Y-TZP (A/AZ) layers with different compositions and thicknesses were prepared starting from ceramic sheets obtained by tape casting. Residual stresses arisen from mismatch in thermal expansion coefficient during sintering were evaluated using luminescence piezo-spectroscopy. The stress in the superficial A layer was found to be compressive, and its value depended on the ratio between thickness of A and AZ layer. The influence of the superficial compressive stress on the abrasive wear resistance was investigated using microscale ball cratering test; results were correlated with the superficial compressive stress and compared with a specimen of pure unstressed Al2O3 prepared both by lamination and by cold isostatic pressing. Experiments show an improvement of performances in the samples containing compressive residual stress in the surface.


Tribologia ◽  
2018 ◽  
Vol 280 (4) ◽  
pp. 63-69 ◽  
Author(s):  
Jerzy NAPIÓRKOWSKI ◽  
Łukasz KONAT ◽  
Marta PIETRUSZEWSKA

This paper presents the results of tests for the effects of laser hardening on the course and intensity of wear of 38GSA (38MnSi4) and Hardox 600 steels in an abrasive soil mass. The tests were carried out under laboratory conditions, using a “rotating bowl” type machine. Two types of soil, i.e. light and medium, were used as the abrasive mass. Based on the obtained test results, it was found that hardness decreased (in relation to asdelivered condition). The performed laser surface hardening process significantly increased the abrasive wear resistance only for 38GSA (38MnSi4) steel. As regards to Hardox steel, the hardening treatment reduced the abrasive wear resistance index compared to the as-delivered condition of the steel.


2014 ◽  
Vol 60 (No. 3) ◽  
pp. 115-120 ◽  
Author(s):  
E. ZDRAVECKÁ ◽  
J. TKÁČOVÁ ◽  
M. ONDÁČ

Current development of high strength abrasion resistant steels is mostly oriented on high hardness, martensitic concept following the hypothesis that the abrasion resistance holds a proportional tendency with hardness. The various experimental observations have suggested that the high hardness of martenzite does not guarantee a high abrasion resistance because the brittle nature of martensite can lead to decrease their abrasive wear. The aim of this work was to analyse the influence of microstructure on abrasion resistance of selected high-strength low-alloyed steels used in the industry. The abrasive wear resistance of selected steels was obtained using an ASTM-G65 three-body abrasive wear test, microstructure and wear resistance determination. It was observed that grain refinement is an effective way of enhancing the abrasion resistance. In this context, micro alloyed steels offer an attractive combination of price and performance.


2011 ◽  
Vol 199-200 ◽  
pp. 167-172
Author(s):  
Jia Wang ◽  
Qing Zhong He ◽  
Yong Hu ◽  
Ming Chao Wang

The new low alloy martensitic wear resistant steel 25Si2MnNi3 and steel 53Si2MnNi3 are developed, which hardness are about HB450 and HB600 respectively, the impact abrasive wear resistance of new low alloy steel relative to high manganese steel ZGMn13 is investigated on MLD-10 type impact abrasive wear tester under the different impact energy, and the wear mechanism is analyzed. As a result, the new low alloy martensitic steel which impact toughness is well always obtains better impact abrasive wear resistance than that of steel ZGMn13 under different impact energy, and the primary wear mechanism gradually changes from micro-ploughing and micro-cutting to micro-fatigue and micro-cracking with impact energy increasing.


2015 ◽  
Vol 60 (3) ◽  
pp. 1569-1574 ◽  
Author(s):  
J. Augustyn-Pieniążek ◽  
P. Kurtyka ◽  
I. Sulima ◽  
J. Stopka

Abstract The presented work provides the results of the abrasive wear resistance tests performed on Co-Cr-Mo and Co-Cr-Mo-W alloys with the use of the Miller’s apparatus. The analyzed alloys underwent microstructure observations as well as hardness measurements, and the abraded surfaces of the examined materials were observed by means of electron scanning microscopy. The performed examinations made it possible to state that the Co-Cr alloys characterized in a high hardness, whereas the changes in the mass decrement were minimal, which proved a high abrasive wear resistance.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 873 ◽  
Author(s):  
Janusz Musiał ◽  
Serhiy Horiashchenko ◽  
Robert Polasik ◽  
Jakub Musiał ◽  
Tomasz Kałaczyński ◽  
...  

The original test results of abrasive wear resistance of different type of construction polymer materials were presented and discussed in this article. Tests were made on an adapted test stand (surface grinder for form and finish grinding). Test samples were made of different types of polymer board materials including RenShape®, Cibatool® and phenolic cotton laminated plastic laminate (TCF). An original methodology based on a grinding experimental set-up of abrasion wear resistance of polymer construction materials was presented. Equations describing relations between material type and wear resistance were presented and discussed. Micro and macro structures were investigated and used in wear resistance prediction.


Tribologia ◽  
2016 ◽  
Vol 269 (5) ◽  
pp. 105-119 ◽  
Author(s):  
Jerzy NAPIÓRKOWSKI ◽  
Łukasz KONAT ◽  
Krzysztof LIGIER

The paper presents the results of abrasive wear resistance tests on Creusabro 4800 and Creusabro 8000 steel. The results obtained for laboratory samples were referred to the structure of the examined types of steel and to the basic indicators characterising their mechanical properties. As a result of the conducted tests, which used the methods of light and scanning microscopy, it has been concluded that, in its delivered condition Creusabro, steel exhibits a complex type of structure, characteristic for steel with the “TRIP effect.” The identified type of structure indicates a precisely adjusted chemical composition and the use of specialised heat treatment and forming processes in the production process of those materials. The abrasive wear resistance tests conducted by means of the “spinning bowl” method in real soil masses, i.e. light soil (loamy sand), medium soil (light till) and heavy soil (normal till), as well as the conducted measurements of hardness, have proven the strict dependence of the obtained indicators of abrasive wear resistance on the phase structure and on the status of the heat treatment of the tested steel. The results of abrasive wear resistance tests for Creusabro steel were referred to 38GSA steel in a normalised condition for comparison.


2012 ◽  
Vol 12 (2) ◽  
pp. 221-226 ◽  
Author(s):  
M. Kawalec ◽  
E. Olejnik

Abrasive Wear Resistance of Cast Iron with Precipitates of Spheroidal VC Carbides The paper presents the results of abrasive wear resistance tests carried out on high-vanadium cast iron with spheroidal VC carbides. The cast iron of eutectic composition was subjected to spheroidising treatment using magnesium master alloy. The tribological properties were examined for the base cast iron (W), for the cast iron subjected to spheroidising treatment (S) and for the abrasion-resistant steel (SH). Studies have shown that high-vanadium cast iron with both eutectic carbides and spheroidal carbides has the abrasion resistance twice as high as the abrasion-resistant cast steel. The spheroidisation of VC carbides did not change the abrasion resistance compared to the base high-vanadium grade.


Sign in / Sign up

Export Citation Format

Share Document