scholarly journals Effect of microstructure factors on abrasion resistance of high-strength steels

2014 ◽  
Vol 60 (No. 3) ◽  
pp. 115-120 ◽  
Author(s):  
E. ZDRAVECKÁ ◽  
J. TKÁČOVÁ ◽  
M. ONDÁČ

Current development of high strength abrasion resistant steels is mostly oriented on high hardness, martensitic concept following the hypothesis that the abrasion resistance holds a proportional tendency with hardness. The various experimental observations have suggested that the high hardness of martenzite does not guarantee a high abrasion resistance because the brittle nature of martensite can lead to decrease their abrasive wear. The aim of this work was to analyse the influence of microstructure on abrasion resistance of selected high-strength low-alloyed steels used in the industry. The abrasive wear resistance of selected steels was obtained using an ASTM-G65 three-body abrasive wear test, microstructure and wear resistance determination. It was observed that grain refinement is an effective way of enhancing the abrasion resistance. In this context, micro alloyed steels offer an attractive combination of price and performance.

Author(s):  
Mete Han Boztepe ◽  
Melih Bayramoglu

Boronizing is one of the thermochemical surface treatment processes which is extensively used to obtain excellent mechanical properties such as high strength, very high hardness, good toughness and fracture toughness. In this study, AISI 1050 steel specimens have been subjected to pack boronizing process by using Ekabor 2 powder within the stainless steel seal container. The experiments were carried out at temperatures of 800 °C, 850 °C and 900 °C for 3, 6 and 9 hours to investigate the effect of these parameters on the wear resistance of boronized specimens. Pin-on-Disk wear testing is used to characterize wear properties of boronized specimens. Wear tests were performed at dry conditions under constant load of 30 N by using 220 mesh size Al2O3 abrasive paper. Different rotating speeds of the pin-on disk were selected as 300, 600, 900, 1200, 1500 revolutions for each of the test specimens. After the abrasive tests, weight losses of the specimens were measured to determine the abrasive wear resistance of boronized specimens. The results were also compared with unboronized and conventional hardened AISI 1050 steel specimens respectively.


Wear ◽  
2019 ◽  
Vol 440-441 ◽  
pp. 203098 ◽  
Author(s):  
Oskari Haiko ◽  
Kati Valtonen ◽  
Antti Kaijalainen ◽  
Sampo Uusikallio ◽  
Jaakko Hannula ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 446-451
Author(s):  
V. I. Antipov ◽  
L. V. Vinogradov ◽  
I. O. Bannykh ◽  
A. G. Kolmakov ◽  
Yu. E. Mukhina ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 660
Author(s):  
Qun Wang ◽  
Yingpeng Zhang ◽  
Xiang Ding ◽  
Shaoyi Wang ◽  
Chidambaram Seshadri Ramachandran

In order to investigate the effect of WC grain size on coatings’ properties and abrasive wear performance, a few WC-20Cr3C2-7Ni coatings with three different WC grain sizes were deposited by the high-velocity oxy-fuel (HVOF) thermal spray process. The phase compositions, microstructures, and mechanical properties of the coatings were investigated. Furthermore, the two- and three-body abrasive wear performances of the three coatings were tested by using SiC and SiO2 abrasives, respectively. The results show that all the three coatings were composed of WC, Cr3C2, and the Ni binder as well as the (W,Cr)2C phase. The abrasive wear resistance of the WC-20Cr3C2-7Ni coating monotonously increased with increasing WC grain size when the SiC abrasive was used in the two- and three-body abrasive wear tests. However, the wear resistance trend was reversed when the SiO2 abrasive was used in the three-body abrasive wear test. The specific wear rate of the WC-20Cr3C2-7Ni coating exposed to the SiC abrasive under the two-body abrasive wear test was the largest. The wear resistance of the coatings was more significantly affected by the hardness of the abrasive particles than the size of carbides present within the coating. The high hardness of SiC can cut both the carbide and the binder phase of the WC-based cermet coatings, resulting in a high wear rate, whereas the low hardness of SiO2 cuts and/or scratches the binder initially, and then it dislodges the carbides from the matrix. The dislodged carbides which were subsequently pulled out from the matrix by the repeated impact of the SiO2 abrasives result in a milder wear rate.


2016 ◽  
Vol 721 ◽  
pp. 351-355 ◽  
Author(s):  
Taavi Simson ◽  
Priit Kulu ◽  
Andrei Surženkov ◽  
Dmitri Goljandin ◽  
Riho Tarbe ◽  
...  

This paper focuses on the influence of hardmetal reinforcement amount, shape and size on the abrasive wear resistance of composite iron self-fluxing alloy (FeCrSiB) based hardfacings produced by the powder metallurgy (PM) technology. First, the size of the reinforcement (1 – 2.5 mm) was fixed, but its shape (angular or spherical) and amount (0 – 50 vol%) were varied. Then the reinforcement shape (angular) and amount (50 vol%) were kept constant, while its size (0.16 – 0.315 mm fine reinforcement and 1 – 2.5 mm coarse reinforcement) and proportion of fine and coarse reinforcement (all fine, all coarse, half fine-half coarse) were varied. ASTM G65 abrasive rubber wheel wear test was applied to find out the wear resistance of the hardfacings; an unreinforced self-luxing alloy (FeCrSiB) hardfacing was the reference material. Volumetric wear rate was calculated according to the weight loss. Worn surfaces were studied under scanning electron microscope. As a result, an optimal composition of the hardmetal containing Fe-based hardfacings based on the reinforcement amount (vol%), shape (irregular or spherical) and size (fine or coarse) is given.


1984 ◽  
Vol 26 (11) ◽  
pp. 835-838
Author(s):  
G. M. Sorokin ◽  
S. N. Bobrov ◽  
N. I. Shumovskii

Sign in / Sign up

Export Citation Format

Share Document