Diesel engine exhaust, measured as elemental carbon. Documentation of proposed values of occupational exposure limits (OELs)

2019 ◽  
Vol 35 (4(102)) ◽  
pp. 43-109
Author(s):  
Jadwiga Szymańska ◽  
Barbara Frydrych ◽  
Elżbieta Bruchajzer

Exhaust emissions from diesel engines (SESD) are multi-component mixtures of chemical compounds resulting from incomplete combustion of fuel and engine oil. The toxic effect of exhaust gases is associated with the presence of toxic and carcinogenic compounds in them. GIS reports in 2019 that the number of employees employed in conditions constituting 0.1– 0.5 of MAC-TWA (applicable for exhaust emissions from diesel engines) in 2017 and in 2018 was 1071 and 986, respectively, while in conditions 0 , 5–1 MAC-TWA were 26 and 46, respectively. In the list of occupational diseases in the years 2013–2017, two cancers were registered: one bladder and one larynx (exposure to PAHs present in exhaust gases). In the clinical picture of acute exhaust poisoning, irritant effects on the mucous membranes of the eyes and upper respiratory tract predominate. Eye conjunctival irritation is considered to be one of the most sensitive indicators of exhaust gas exposure. Chronic poisoning is usually seen in people who have been exposed to work for at least several years. Functional and morphological changes in the respiratory system dominate. Prolonged exposure to high concentrations of exhaust gases has resulted in: accumulation of solid particles in macrophages, changes in lung cells, fibrosis and epithelial metaplasia. Exposure to exhaust fumes can exacerbate the symptoms of existing diseases, e.g. asthma, allergies. The results of epidemiological studies indicate a relationship between occupational exposure to exhaust gas emitted from diesel engines and the increased incidence of certain groups of cancers, mainly lung cancer and bladder cancer. Studies conducted on laboratory animals have shown that exposure to exhaust fumes emitted from diesel engines caused disorders of the respiratory, circulatory, nervous and immune systems. Mutagenicity tests showed positive responses in several Salmonella strains. Animal studies (prenatal and adult exposure) suggest that exposure to exhaust gas may affect male fertility. Annex III of Directive (EU) 2019/130 of the European Parliament and of the Council contains occupational exposure limit values amending Directive 2004/37 / EC. For exhaust emissions from diesel engines for an 8-hour working day, this value was set at 0.05 mg/m3 (measured as elemental carbon). After 1–2 hours of human inhalation exposure to concentrations of 75–225 µg/m3 (as elemental carbon), a decrease in respiratory function parameters and the occurrence of inflammatory changes in the lungs were observed. There is insufficient data on occupational exposure to exhaust emissions from new generation diesel engines. Therefore, it was proposed to adopt as the MAC-TWA value for exhaust emissions from diesel engines a concentration of 0.05 mg/m3 (measured as elemental carbon) included in the Directive 2019/130, without setting STEL and TLV-C. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.

2017 ◽  
Vol 33 (1(91)) ◽  
pp. 97-113
Author(s):  
Andrzej Sapota ◽  
Małgorzata Skrzypińska-Gawrysiak ◽  
ANNA KILANOWICZ

Nitroethane is a colorless oily liquid with a mild fruity odor. It is used mainly as a pro-pellant (e.g., fuel for rockets), and as a solvent or dissolvent agent for cellulose esters, resins (vinyl and alkyd) and waxes, and also in chemical synthesis.Occupational exposure to nitroethane may occur during the process of its production and processing. There are no data on air concentra-tions of nitroethane in occupational exposure. In 2010–2015, workers in Poland were not exposed to nitroethane concentrations exceed-ing the maximum allowable value – 75 mg/m3 (the limit value valid since 2010).Nitroethane can be absorbed into the body via inhalation of its vapors or by ingestion.The discussed cases of nitroethane acute poi-soning caused by an accidental ingestion of artificial fingernail remover containing pure nitroethane concerned children under three years. Few hours after ingestion, cyanosis and sporadic vomiting were observed in children. The methemoglobin level reached 40÷50%.Neither data on chronic nitroethane poisoning in humans nor data obtained from epidemio-logical studies are available.On the basis of the results of acute toxicity studies nitroethane has been categorized in the group of hazardous compounds. However, eye and dermal irritation or allergic effects have not been evidenced. The studies of sub-chronic (4 and 90 days) and chronic (2 years) exposure to nitroethane per-formed on rats and mice (concentration range 310 ÷ 12 400 mg/m3) revealed the methemo-globinogenic effect of this compound and a minor damage to liver, spleen, salivary gland and nasal turbinates.Niroethane has shown neither mutagenic nor carcinogenic effects. Its influence on fertility has not been evidenced either. After chronic exposure (2 years) of rats to ni-troethane at concentration of 525 mg/m3 (the lowest observed adverse effect level – LOAEL), a slight change in a body mass of exposed fe-male animals and subtle changes in biochemi-cal parameters were observed, but there were no anomalies in hematological and histopatho-logical examinations.The value of 62 mg/m3 has been suggested to be adopted as the MAC value for nitroethane after applying the LOAEL value of 525 mg/m3 and relevant coefficients of uncertainty. The STEL value for nitroethane was proposed ac-cording to the methodology for determining short term exposure level value for irritating substances as three times MAC value (186 mg/m3) to prevent the effects of sensory irri-tations in humans. Because of its methemoglo-binogenic effect, 2% Met-Hb has been suggest-ed to be adopted as the value of biological ex-posure index (BEI), like the value already adopted for all methemoglobinogenic sub-stances.The Scientific Committee on Occupational Exposure Limits (SCOEL) proposed the time-weighted average (TWA) for nitroethane (8 h) as 62 mg/m3 (20 ppm), short-term exposure limit (STEL, 15 min) as 312 mg/m3 (100 ppm) and “skin” notation.Proposed OEL and STEL values for nitroethane were subjected to public consultation, con-ducted in 2011 by contact points, during which Poland did not raise any objections to the pro-posals. The proposed values for nitroethane by SCOEL has been adopted by the Advisory Committee on Safety and Health at Work UE (ACSH) and included in the draft directive establishing the IV list of indicative occupa-tional exposure limit values.


2019 ◽  
Vol 35 (1(99)) ◽  
pp. 77-87
Author(s):  
Danuta Koradecka ◽  
Jolanta Skowroń

In 2018 the Commission met at three sessions, during which 9 documentations for recommended exposure limits of chemical substances, were discussed. Moreover the Commission discussed on: a system for notifying entrepreneurs, employees and inspection bodies of proposals for new or verified binding values (for carcinogenic and mutagenic substances) or indicator values for harmful chemicals in the form of messages, rules for setting limit values for harmful to health chemicals in the working environment, a program to improve working conditions in copper mines of KGHM Polska Miedź SA. and the methodology for determining hygiene standards for active substances of cytostatics, taking into account the uncertainty factor "F". The Commission suggested to the Minister of Family, Labour and Social Policy the following changes in the list of MAC values: adaptation of the Polish list of maximum admissible concentration (MAC-NDS) to Directive 2019/130/EC of 31/1/2019 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work (these are: chloroethene, o-toluidine and 1,3-butadiene), adjusting the MAC-value for trimethylamine to the value included in the draft directive setting the fifth list of indicative occupational exposure limits, introducing changes in the list of the maximum admissible concentration of chemicals and dust harmful to health for the substances mentioned, introduce the following substances into the list of maximum admissible concentrations of chemical agents harmful to health: phenolphthalein (Carc. 1B), etoposide (Carc. 1B), fluorouracil (Muta. 1B, skin), 2-nitroanisole (Carc. 1B), N-nitrosodimethylamine (Carc. 1B). Four issues of the "Principles and Methods of Assessing the Working Environment" were published in 2018. The booklets included: 11 documentation of occupational exposure limit, 11 methods for the determination of chemical concentrations in the working environment, 4 articles, a report on the activities of the Interdepartmental Commission for MACs and MAIs in 2017 and the indexes of the documentations, methods and articles published between 2000-2018. Three sessions of the Commission are planned for 2019. MAC values for 10 chemicals substances will be discussed at these meetings. The Commission and the Group of Experts will continue to work on adapting the Polish list of the maximum admissible concentrations to: proposals for binding values for carcinogenic or mutagenic substances, proposed concentration limit values developed by the Committee for Risk Assessment (RAC) and work carried out at SCOEL.


2007 ◽  
Vol 129 (4) ◽  
pp. 338-347 ◽  
Author(s):  
Murari Mohon Roy

Direct injection (DI) diesel engines emit a far more disagreeable exhaust odor than gasoline engines, especially at low temperatures and at idling. There is no proper system of odor reduction in these conditions in DI diesel engines. This study investigated a charcoal-adsorption system to reduce exhaust emissions including odor in a DI diesel engine at idling under no load operations, where exhaust temperatures are low. Low temperature exhaust gas is passed through a charcoal adsorber. Charcoal has the property of adsorbing odorous gas components. Here odor is reduced more than 0.5 points, a significant odor reduction depending on the engine and adsorber conditions. Exhaust noise, nitrogen oxides (NOx), and eye irritation are also significantly reduced with the system. This study further investigated water-washing system for odor reduction in DI diesel engines at low exhaust temperature conditions. Exhaust gas is passed through the water in the water tank of the system. Aldehydes, organic acids, and other oxygenated components, which are the main odorous components in exhaust gases, are dissolved in water reducing exhaust odor significantly. Eye irritation of exhaust gases is also significantly reduced. The water-washing system not only reduces the odor and eye irritation but also carbon dioxide (CO2), carbon monoxide (CO), NOx, and smoke are reduced more than 20–30%. The sound level of exhaust gases is also reduced 10–15dB with this system. Air dilution is also attempted in this study for odor reduction where a large amount of fresh air is mixed with exhaust gases. Here dilution ratio of 5 is used. Air dilution alone can reduce odor about 0.5 points. However, odor about 1.5–1.6 points (about 60–65%) can be reduced when air dilution is used in combination with charcoal-adsorber and water-washing system, and odor level is lowered below level 2, which is acceptable for all human beings.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Małgorzata Szewczyńska ◽  
Małgorzata Pośniak ◽  
Elżbieta Dobrzyńska

In order to characterize PAHs emissions of diesel engine fuelled with diesel and its blend (B20, B40). In the particle phase, PAHs in engine exhausts were collected by fiberglass filters using Electrical Low Pressure Impactor (ELPI) and then determined by a high performance liquid chromatography with a fluorimetric detector (HPLC-FL). The main content in exhaust gases from diesel engine, regardless the type of applied fuel, is constituted by the particles fraction of diameter <0.25 μm. Particles sized <0.25 μm constituted on average approximately 68% of particles in diesel exhaust gases and approx. 50% of particles emitted by biodiesel B20 and B40. When the B100 bioester additive was applied, the total emission of particles was reduced thus the volume of toxic substances adsorbed on them was lower. The analysis of chemical composition of <0.25 μm exhaust gas fraction showed that there were mainly 3- and 4-ring aromatic hydrocarbons in the exhaust gas of diesel fuel while in B40 single PAHs with the number of rings of 4 and 5 were detected. An application of ELPI permitted a further separation of <0.25 μm particle’s fraction and a real-time determination of interalia number, mass, and surface concentrations.


2020 ◽  
Vol 1 (1) ◽  
pp. 156-163
Author(s):  
Mark Leont’evich KHAZIN ◽  

The purpose of the work is to analyze the problems of using mining machines with diesel engines, the exhaust gases of which have a harmful effect on human health and the environment. Research methodology. The environmental problems arising from the use of mining machines, and environmental standards governing the use of diesel engines in different countries of the world are analyzed. Results. Environmental protection is one of the most important problems of humanity, since people’s lives, their health and well-being depend on its solution. The mining industry operates a huge amount of equipment with diesel engines: mining trucks, excavators, drilling rigs and other mining machines. Engine exhaust fumes contain toxic elements that have a significant impact on human health and the environment. The gas pollution of the working atmosphere entails the need to stop the quarry, and the deterioration of visibility on the highway also causes a partial or complete shutdown of the equipment until the content of harmful substances in the air drops to normal. Today, environmental requirements for a car engine are priority, so the global engine industry is aimed not only at increasing their performance, but also at significantly improving their environmental performance. The problem of air pollution by harmful substances contained in the exhaust of diesel engines is becoming global. To solve it requires the joint efforts of many countries. International conventions and the adoption of relevant standards serve as a tool for rapprochement in this area. Conclusions. Most countries in Europe, Asia and America are guided by similar standards for the content of harmful substances in exhaust gases. The EU in this regard is a kind of authority: it most often updates these indicators and implements strict legal regulation. Other countries are following this trend and are also updating emission standards.


2021 ◽  
Author(s):  
Michalina Kamińska ◽  
Daniel Kołodziejek ◽  
Natalia Szymlet ◽  
Paweł Fuć ◽  
Rafał Grzeszczyk

The exhaust emission standards in force in various parts of the world for off-road vehicles are becoming more and more stringent. Therefore, research on the compounds of harmful exhaust fumes emitted by vehicles of this category is constantly being researched and activities aimed at limiting them are constantly being carried out. The basic problem in terms of measuring exhaust emissions is the approval tests of traction vehicles, which are carried out on engine dynamome-ters. Therefore, it is impossible to obtain reliable results concerning their actual impact on the natural environment. It is therefore advisable to carry out the tests in real operation conditions, as is the case for road vehicles for which RDE (Real Driving Emissions) tests are carried out. The latest Stage V emission standards push for the introduction of this type of test, but no limit values for toxic exhaust gases have been established and no test guidelines have been defined for as-sessing actual emissions. This article describes the issues related to the legislative guidelines for non-road vehicles in force in Europe, as well as the measurement tools used, such as mobile equipment for measuring emissions of PEMS (Portable Emissions Measurement Systems) and newly developed emission gates.


Sign in / Sign up

Export Citation Format

Share Document