Perforation analysis of selected thin-walled structures

2021 ◽  
Vol 70 (1) ◽  
pp. 63-77
Author(s):  
Arkadiusz Popławski ◽  
Weronika Piskorz

The paper concerns multivariate numerical analyses of three thin-walled three-dimensional structures of honeycomb, rectangular and auxetic topologies. The analyses were preceded by the selection of the material from which the structures could potentially be made. The most optimal material was selected from three metallic materials for which an advanced constitutive material model and a failure model were available. The use of an appropriate model has allowed a number of phenomena to be taken into account during the very complex perforation process, which translates into the quality and accuracy of the numerical results obtained. The main numerical analyses carried out after the material selection stage, focused on the analysis of the strength of the structures in the process of their perforation with objects in the form of a ball with a diameter of 10 mm. The three objects hitting the structures were arranged in such a way as to take into account the influence of the impact location on the perforation process. Based on the measurement of the perforation depth of the balls and the analysis of the area of impact on the structure, the most strength topology was selected. In the next step, additional numerical analyses were carried out to determine the effectiveness of the structure and to estimate its ballistic limit.

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3230 ◽  
Author(s):  
Tomasz Kopecki ◽  
Przemysław Mazurek ◽  
Tomasz Lis

The aim of the study was to determine the impact of the use of isogrid stiffeners on the stress and displacement distribution of a thin-walled cylindrical shell made of layered composites subjected to torsion. It also strives to define criteria for assessing the results of non-linear numerical analysis of models of the examined structures by comparing them with the results of the model experiment. The study contains the results of experimental research using models made of glass–epoxy composites and the results of numerical analyses in non-linear terms. The experiment was carried out using a special test stand. The research involved two types of considered structures. The results of the research allowed to create the concept of an adequate numerical model in terms of the finite element method, allowing to determine the distribution of stress and strain in the components of the studied structures. Simultaneously, the obtained conformity between the results of non-linear numerical analyses and the experiment allows to consider the results of analyses of the modified model in order to determine the properties of different stiffening variants as reliable. The presented research allows to determine the nature of the deformation of composite thin-walled structures in which local loss of stability of the covering is acceptable in the area of post-critical loads.


Author(s):  
Jianxun Du ◽  
Peng Hao ◽  
Mabao Liu ◽  
Rui Xue ◽  
Lin’an Li

Because of the advantages of light weight, small size, and good maneuverability, the bio-inspired micro aerial vehicle has a wide range of application prospects and development potential in military and civil areas, and has become one of the research hotspots in the future aviation field. The beetle’s elytra possess high strength and provide the protection of the abdomen while being functional to guarantee its flight performance. In this study, the internal microstructure of beetle’s elytra was observed by scanning electron microscope (SEM), and a variety of bionic thin-walled structures were proposed and modelled. The energy absorption characteristics and protective performance of different configurations of thin-walled structures with hollow columns under impact loading was analyzed by finite element method. The parameter study was carried out to show the influence of the velocity of impactor, the impact angle of the impactor and the wall thickness of honeycomb structure. This study provides an important inspiration for the design of the protective structure of the micro aerial vehicle.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4742
Author(s):  
Tomasz Kopecki ◽  
Przemysław Mazurek ◽  
Łukasz Święch

This study presents the results of experimental research and numerical calculations regarding models of a typical torsion box fragment, which is a common thin-walled load-bearing structure used in aviation technology. A fragment of this structure corresponding to the spar wall was made using 3D printing. The examined system was subjected to twisting and underwent post-critical deformation. The research was aimed at determining the influence of the printing direction of the structure’s individual layers on the system stiffness. The experimental phase was supplemented by nonlinear numerical analyses of the models of the studied systems, taking into account the details of the structure mapping using the laminate concept. The purpose of the calculations was to determine the usefulness of the adopted method for modeling the examined structures by assessing the compliance of numerical solutions with the results of the experiment.


2015 ◽  
Vol 667 ◽  
pp. 22-28 ◽  
Author(s):  
Jing Li ◽  
Zhan Li Wang ◽  
Ping Xi ◽  
Yang Jiao

Aiming at the problem that the machining accuracy of 45 steel rectangular thin-walled parts are difficult to ensure because of poor rigidity, poor manufacturability and easy machining deformation, it used the three-dimensional finite element method, determined the material model of 45 steel and established a prediction model of 45 steel rectangular thin-walled parts milling deformation. The prediction results display that the deformation of the workpiece shows obvious parabola in length direction and a linear decreasing trend in width direction. It verifies the correctness of the prediction model through milling experiments and provides the method and basis for the prediction and control of machining deformation of 45 steel thin-walled parts.


Author(s):  
Tsu-Te Wu

This paper presents the dynamic simulation of the 6M drum with a locking-ring type closure subjected to a 4.9-foot drop. The drum is filled with water to 98 percent of overflow capacity. A three dimensional finite-element model consisting of metallic, liquid and rubber gasket components is used in the simulation. The water is represented by a hydrodynamic material model in which the material’s volume strength is determined by an equation of state. The explicit numerical method based on the theory of wave propagation is used to determine the combined structural response to the torque load for tightening the locking-ring closure and to the impact load due to the drop.


2012 ◽  
Vol 165 ◽  
pp. 130-134 ◽  
Author(s):  
Fauziah Mat ◽  
K. Azwan Ismail ◽  
S. Yaacob ◽  
O. Inayatullah

Thin-walled structures have been widely used in various structural applications asimpact energy absorbing devices. During an impact situation, thin-walled tubesdemonstrate excellent capability in absorbing greater energy through plastic deformation. In this paper, a review of thin-walled tubes as collapsible energy absorbers is presented.As a mean of improving the impact energy absorption of thin-walled tubes, the influence of geometrical parameters such as length, diameter and wall thickness on the response of thin-walled tubes under compression axial loading are briefly discussed. Several design improvements proposed by previous researchers are also presented. The scope of this review is mainly focus on axial deformation under quasi-static and dynamic compressive loading. Other deformations, such as lateral indentation, inversion and splitting are considered beyond the scope of this paper. This review is intended to assist the future development of thin-walled tubes as efficient energy absorbing elements.


2011 ◽  
Vol 325 ◽  
pp. 508-513 ◽  
Author(s):  
Peng Zhang ◽  
Bo Wang ◽  
Mark J. Jackson ◽  
Xing Mao

Current requirements for producing highly precise and ultra-smooth micro structured surfaces of small parts are proposed in certain situations. The following question arises: how to make a highly precise and ultra-smooth micro-structured surface with high efficiency and low cost? Novel desktop lapping and polishing devices should be developed to satisfy these requirements. In order to improve the surface topography and remove the surface damaged layer of a highly precise and ultra-smooth micro thin-walled structure after milling with the width of 150 μm and the depth of 10 μm, a novel lapping desktop device is designed and developed. There are two key points in the design of the lapping desktop device: one is the vertical coupled macro-micro movement axis; the other is the fixture with a thin and flexible hinge structure, which has the capability of measuring both force and displacement as a double-feedback sensor to control both the micro lapping force and the depth of lapping. The experimental results show that the surface topography of the micro thin-walled structured surface is much improved after lapping, and that the three-dimensional surface roughness decreased from 329 nm to 82.2 nm.


Sign in / Sign up

Export Citation Format

Share Document