scholarly journals Experimental Studies on Mechanical Properties of Carbon Nanotube Reinforced Aluminum 7075 Composite Material

2021 ◽  
Vol 53 (6) ◽  
pp. 210611
Author(s):  
Mahendra Kumar Chidananda Swamy ◽  
Raghavendra Bommanahalli Venkatagiriyappa

In the present work multiwalled carbon nanotubes were  added as  reinforcement to aluminum 7075 matrix at 0.5%, 0.75% and 1.25% by weight proportion through stir casting technique. The mechanical properties of the produced composite were studied. The composite has considerably good tensile and wear resistance properties and hence finds its best suited application in aircraft frame and wings structures. Microstructure analysis through SEM showed a uniform distribution of the reinforcement material in the matrix. XRD graphs were taken at selected points during microscopic studies to determine the chemical composition of the matrix alloy, the reinforcement and the composite. The experimental results showed that 1.25% reinforcement in the composite material exhibited a tensile strength of 560 N/mm2 and a compression strength of  649.6 N/mm2 as the highest among the compositions. Thus,  the reinforcement addition at 1.25% improved the tensile and compression strength of the composite material.

Author(s):  
K H W Seah ◽  
S C Sharma ◽  
M Krishna

The mechanical properties and the fracture mechanism of composites consisting of ZA-27 alloy reinforced with titanium dioxide particles were investigated with the primary objective of understanding the influence of the particulate reinforcement on the mechanical behaviour of the ZA-27 alloy. The titanium dioxide particle content in the composites ranged from 0 to 6 per cent, in steps of 2 wt %. The composites were fabricated by the stir casting technique in which the reinforcement particles were dispersed in the vortex created in the molten matrix alloy. The study revealed improvements in Young's modulus, ultimate tensile strength (UTS), compressive strength, yield strength and hardness of the composites as the titanium dioxide content was increased, but at the expense of ductility and impact strength. The fracture behaviour of the composite was also significantly influenced by the presence of titanium dioxide particles. Eventual fracture was a result of crack propagation through the matrix as well as through the reinforcing particles. Scanning electron microscopy and fractography analyses were carried out to provide suitable explanations for the observed phenomena.


2018 ◽  
Vol 877 ◽  
pp. 50-53 ◽  
Author(s):  
Vinayashree ◽  
R. Shobha

Aluminium composites are in predominant use due to their lower weight and high strength among the MMC’s. Aluminium 6061 is selected as matrix and E-glass fiber is selected as reinforcement. Fabrication of composite is done by stir casting method. Each fabrication carries the E-glass reinforcement content varied from 2% to 10%. The present article attempts to evaluate the mechanical properties of E-glass fibre reinforced composite and study the effect of reinforcement on the matrix alloy through mechanical properties. When compared to ascast mechanical properties the UTS has increased from 74.28 N/sq mm to 146.8 N/sq mm for a composite at 6% E-glass. The hardness of as-cast has also increased from 22 RHB to 43 RHB at 6% E-glass and the wear of composite has exhibited a decreasing tend with increase in reinforcement content along the sliding distance. The results are analyzed in certain depth in the current paper. The mechanical properties of composites have improved with the increase in the weigh percentage of glass fiber in the aluminium matrix.


2019 ◽  
Vol 969 ◽  
pp. 122-127
Author(s):  
B.N. Anjan ◽  
G.V. Preetham Kumar

Zinc aluminum based matrix composites reinforced with SiC and Al2O3 particles have significant applications in the automobile field. Stir casting method followed by squeeze process was used for fabrication. ZA27 composites reinforced with SiC and Al2O3 particles (20-50µm) in various weight percentage (wt%) ranges from 0-10 in a step of 5 each was fabricated. OM, SEM and EDS analysis of microstructures obtained for matrix alloy and reinforced composites were performed in order to know the effect of varying wt% on physical and mechanical properties of composites. Squeeze casting technique shows better features such as fine microstructure as a result of low porosity and good bonding between matrix and reinforcement. Addition of reinforcements decreased the densities of matrix alloy. SiC reinforced composites showed better results as compared with Al2O3 reinforced ones. Hardness and ultimate tensile strength value of 10 wt% reinforced composites showed improved results.


2011 ◽  
Vol 462-463 ◽  
pp. 967-971
Author(s):  
Mahamad Noor Wahab ◽  
Mariyam Jameelah Ghazali ◽  
Abdul Razak Daud

Microstructure and mechanical properties of heat treated Al-Si alloy containing up to 10 wt% aluminum nitride (AlN) particles were investigate. In this work high purity AlN powder with different weight percentage of 0, 5, 7 and 10 were calculated as reinforced material to the metal matrix composites. The Al-Si matrix was prepared by a bottom pour stir casting technique. Heat treatment was performed by soaking and followed by an aged treatment. It was found that the AlN particles were scattered randomly distributed in the matrix composite. Ageing induced Si grain transformation into to spheroid shapes while Al dendrites tend to become finer. Ultimate tensile strength (UTS) had improved drastically from to 125MPa to 306MPa for un-aged Al-Si alloy and aged AlN 7 wt%. Fracture morphologies showed a pronounced feature with small dimples, tear ridges and micro neck particularly in the aged samples leading to a higher tensile value and increase in ductility. The presence of AlN particles in the alloys had improved the tensile strength by slowing down the plastic deformation during tensile test.


Author(s):  
Parmeshwar P Ritapure ◽  
Yashwant R Kharde ◽  
Rashmi G Yadav ◽  
Suyash Y Pawar ◽  
Bharat D Aldar

This investigation studied the effect of Al2O3 reinforcement on sliding wear (dry) characteristics of Al–25Zn/Al2O3 composites at various temperatures, speeds, and loads applied for 1400 m sliding distances as per the Taguchi L16 orthogonal array using a tribometer with an Emergency Number24 shaft steel disk. Al–25Zn alloy-based composites reinforced with 10, 15, and 20 wt% of Al2O3 particles were fabricated by the stir casting technique. The results show a significant alteration in mechanical and tribological properties with reinforcement of Al2O3 content. The optimum mechanical and sliding wear properties are seen for the composite with 10 wt% of Al2O3. The material removal in the matrix alloy is due to adhesion and in composites mainly due to abrasion and delamination. The developed regression model and the artificial neural network model can forecast the composite's wear behavior with good precision.


2016 ◽  
Vol 5 (3) ◽  
Author(s):  
Shashi Prakash Dwivedi ◽  
Satpal Sharma ◽  
Raghvendra Kumar Mishra

AbstractChicken eggshell (ES) is an aviculture by-product that has been listed worldwide as one of the worst environmental problems. The effective utilisation of ES biowaste is strongly encouraged in our society due to environmental and economic reasons. The aluminium alloy (AA) 2014/5 wt% carbonised ES metal matrix composite used in this study was fabricated by electromagnetic stir casting technique at parameters of 12 A (current), 180 s (time) and 700°C (matrix pouring temperature), respectively, and immediately extruded on universal testing machine at 60 MPa using cylindrical H13 tool steel die coated with graphite to avoid upper flow of ES particles and to improve wettability of carbonised ES with AA2014 alloy. Microstructures of composites show uniform distribution of carbonised ES particles. Density and overall cost of the metal matrix composite decreases 3.57% and 5%, respectively, when carbonised ES particulate is added 5% by weight. Tensile strength, hardness, toughness and fatigue strength of AA2014/5 wt% carbonized eggshell composite were also measured. Results show an improvement in these mechanical properties with addition of ES in the matrix alloy.


Author(s):  
Jayakumar Lakshmipathy ◽  
Balamurugan Kulendran

AbstractThe wear behavior of Al/SiC composites prepared by stir casting technique is investigated to find out the effects of the weight percentage of SiC, load, and the number of strokes on a shaper machine. Metal matrix composite (MMC) pins are prepared with different weight percentages of SiC (10%, 15%, and 20%). The tests are carried out with different load conditions (25, 50 and 75 N) and different number of strokes (420,780 and 1605 strokes). Wear surfaces of tested samples are examined in scanning electron microscope (SEM). Hardness and impact tests are also carried out on the MMC samples. The experimental results show that the hardness of composites increases with an increase in SiC particle, and the impact strength decreases with increase in SiC content. The volume loss of MMC specimens are less than that of the matrix alloy. Moreover, the temperature rise near the contact surface of the MMC specimens increases with increase in wt% of SiC, load, and number of strokes. The coefficient of friction decreases with increase in load and the number of strokes.


2021 ◽  
Vol 31 (1) ◽  
pp. 51-56
Author(s):  
Ashish Kumar Srivastava ◽  
Ambuj Saxena ◽  
Nagendra Kumar Maurya ◽  
Shashi Prakash Dwivedi

In the current scenario, the development of high strength and low weight material is the demand of the aerospace defence organizations. Magnesium alloy based composite has low density, good mechanical and physical properties. In this study, magnesium alloy AZ31B is used as reinforcement material and graphene nanoparticle is used as reinforcement material. Stir casting technique is used for the development of composite material. Three weight percentages i.e. 0.4%, 0.8% and 1.2% are used for the casting. The microstructural analysis is performed to validate the presence of graphene particles in the developed composite. Further mechanical properties such as tensile strength, hardness and toughness are evaluated. Experimental results confirm that GNPs particles are uniformly distributed into the matrix material. It was observed that due to the reinforcement of GNPs particles tensile strength of the material is improved by 31.17%, hardness is improved about 46.9%. However, the peak value of toughness is observed 12.6 Jule/cm2 in the matrix material, it decreases by increasing the wt% of reinforcement particle and lowest value of toughness of 6.82 Jule/cm2 is observed in AZ31B/1.2%GNP composite.


Author(s):  
Shanmuga Sundaram Karibeeran ◽  
Dhanalakshmi Sathishkumar ◽  
Balasubramanian Muthaih ◽  
Sivakumar Palanivelu

Aluminum based metal matrix composites offer greater potential for light weight, wear resistant and high temperature applications. Secondary processing like extrusion results in the improvement of strength and ductility of the as-cast composites. The objective of this research is to investigate the effect of reinforcement type and extrusion process on the microstructure and mechanical properties of the hot extruded Al2014 aluminum alloy. Two different composites were made by reinforcing the alloy with 10 wt.% SiC and 10 wt.% Si3N4 particles using stir casting method. The particles were electroless Ni coated to improve the wettability of reinforcement by the matrix alloy. The composite ingots were further extruded at 475 °C with an extrusion ratio of 8:1. The microstructures and the mechanical properties of the base alloy and the composites were examined systematically. The extruded composites show more homogenous microstructure with uniform distribution of particles in the matrix alloy. Both the Al/SiC and Al/Si3N4 composites exhibited improved hardness compared to the base alloy in both as-cast and extruded conditions. It was also found from tension tests that the both the composites show higher yield strength, ductility and ultimate tensile strength (UTS) than the base alloy in the extruded condition. The reason for improvement in strength in the extruded conditions is explained in detail. Fracture surface analysis revealed the transition from brittle fracture mode in the as cast composites to the ductile fracture in the extruded condition.


Sign in / Sign up

Export Citation Format

Share Document