Effect of Silver Nanoparticles on Toxigenic Fusarium spp. and Deoxynivalenol Secretion in Some Grains

2018 ◽  
Vol 101 (5) ◽  
pp. 1534-1541 ◽  
Author(s):  
Medhat A El-Naggar ◽  
Aisha M Alrajhi ◽  
Moustafa M Fouda ◽  
Eman M Abdelkareem ◽  
Tamer M Thabit ◽  
...  

Abstract Background: Deoxynivalenol (DON) is one of the most important fungal mycotoxins excreted by different Fusarium species in many types of grains and food commodities. It has high damage impact on human and animal immune systems. Objective: This in vitro study aimed to evaluate the influence of silver nanoparticles (Ag-NPs) as an inhibitor for the DON toxin excreted from some Fusarium spp., which were isolated from barely, wheat, and corn grains. Methods: Ag-NPs were estimated on Minimum Inhibitory Concentration, using levels of 5, 25, 50, 75, and 100 ppm, while the effect on DON was conducted with ELISA. Tri13 and Tri7 primers were used to evaluate the impact of Ag-NPs on the DNA of tested toxigenic Fusarium isolates. Results: Results revealed that the relative density values (Rd, %) of the isolated Fusarium from barley, wheat, and corn grains were 41.27, 26.47, and 30.76%, respectively. The predominant fungus was F. graminearum and F. culmorum in wheat and barley, respectively. The maximum inhibition diameters used for concentrations were 0.5, 2.8, 3.2, 3.3, and 3.31 mm, respectively. The impact of Ag-NPs on genomic structure was limited. Results demonstrated that Ag-NPs have the ability to reduce the linear growth of Fusarium spp. and eliminate the DON toxin to 34.44, 34.60, and 34.89% at 50, 75, and 100 ppm. Conclusions: Ag-NPs are considered nontransgenic substances, and their impact on Fusarium DNA under tested concentrations has been neglected. Ag-NPs may work as an alternative to fungicides to reduce fungal growth and eliminate DON mycotoxins.

2020 ◽  
Vol 7 (4) ◽  
Author(s):  
Amir KarimiPourSaryazdi ◽  
Pooya Tavakoli ◽  
Mohammad Barati ◽  
Fatemeh Ghaffarifar ◽  
Ali Dalir Ghaffari ◽  
...  

Background: Toxoplasmosis is a tropical disease that is opportunistic in immunocompromised patients. Objectives: In this research, our goal was to assess the anti-parasitic effect of silver nanoparticles (Ag-NPs) based on ginger extract on T. gondii tachyzoites. Methods: This study was conducted to assess the effects of various concentrations of nanoparticles on the parasite using light microscopy. The MTT assay was also conducted to evaluate the toxic effects of silver nanoparticles based on ginger extract on macrophage cells. In addition, the potential apoptosis of T. gondii by silver NPs was assessed using the flow cytometry technique. Results: Based on the tachyzoite assay using microscopic examination, it was observed that the higher the NPs concentration and the longer the parasite’s exposure to NPs, the greater the lethal effect of NPs on tachyzoites. The IC50 (inhibitory concentration) for NPs against T. gondii tachyzoites was 2 ppm. Also, according to the MTT assay, the 40 ppm concentration of nanoparticles had the most toxic impact on macrophages. Moreover, silver NPs led to apoptosis in approximately 55.22% of tachyzoites based on the flow cytometry technique. Conclusions: Based on the above results, it is concluded that silver nanoparticles based on ginger extract have a lethal effect on T. gondii and induce apoptosis in this parasite. This study encourages further studies in vivo.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1652
Author(s):  
Dorota Katarzyńska-Banasik ◽  
Anna Kozubek ◽  
Małgorzata Grzesiak ◽  
Andrzej Sechman

The continuous development of poultry production related to the growing demand for eggs and chicken meat makes it necessary to use modern technologies. An answer to this demand may be the use of nanotechnology in poultry farming. One of the promising nanomaterials in this field are silver nanoparticles (AgNPs), which are used as disinfectants, reducing microbial pollution and the amounts of greenhouse gases released. This study aimed to evaluate the effect of AgNPs on the proliferation and apoptosis process in the granulosa cells of chicken preovulatory follicles. The in vitro culture experiment revealed that both 13 nm and 50 nm AgNPs inhibited the proliferation of the granulosa cells. However, a faster action was observed in 50 nm AgNPs than in 13 nm ones. A size-dependent effect of AgNP was also demonstrated for the caspase-3 activity. AgNPs 13 nm in size increased the caspase-3 activity in granulosa cells, while 50 nm AgNPs did not exert an effect, which may indicate the induction of distinct cell death pathways by AgNPs. In conclusion, our study reveals that AgNPs in vitro inhibit granulosa cell proliferation and stimulate their apoptosis. These results suggest that AgNPs may disrupt the final stage of preovulatory follicle maturation and ovulation.


Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 438
Author(s):  
Mary E. Ridout ◽  
Bruce Godfrey ◽  
George Newcombe

Fusarium species coexist as toxigenic, systemic pathogens in sweet corn seed production in southwestern Idaho, USA. We hypothesized that fungal antagonists of seedborne Fusarium would differentially alter production of Fusarium mycotoxins directly and/or systemically. We challenged the Fusarium complex by in vitro antagonism trials and in situ silk and seed inoculations with fungal antagonists. Fungal antagonists reduced growth and sporulation of Fusarium species in vitro from 40.5% to as much as 100%. Pichia membranifaciens and Penicillium griseolum reduced fumonisin production by F. verticillioides by 73% and 49%, respectively, while P. membranifaciens and a novel Penicillium sp. (WPT) reduced fumonisins by F. proliferatum 56% and 78%, respectively. In situ, pre-planting inoculation of seeds with Penicillium WPT systemically increased fumonisins in the resulting crop. Morchella snyderi applied to silks of an F1 cross systemically reduced deoxynivalenol by 47% in mature seeds of the F2. Antagonists failed to suppress Fusarium in mature kernels following silk inoculations, although the ratio of F. verticillioides to total Fusarium double with some inoculants. Fusarium mycotoxin concentrations in sweet corn seed change systemically, as well as locally, in response to the presence of fungal antagonists, although in Fusarium presence in situ was not changed.


2020 ◽  
Author(s):  
Kévin Brunet ◽  
François Arrivé ◽  
Jean-Philippe Martellosio ◽  
Isabelle Lamarche ◽  
Sandrine Marchand ◽  
...  

Abstract Alveolar macrophages (AM) are the first-line lung defense against Mucorales in pulmonary mucormycosis. Since corticosteroid use is a known risk factor for mucormycosis, the aim of this study was to describe the role of corticosteroids on AM capacities to control Lichtheimia corymbifera spore growth using a new ex vivo model. An in vivo mouse model was developed to determine the acetate cortisone dose able to trigger pulmonary invasive infection. Then, in the ex vivo model, male BALB/c mice were pretreated with the corticosteroid regimen triggering invasive infection, before AM collection through bronchoalveolar lavage. AMs from corticosteroid-treated mice and untreated control AMs were then exposed to L. corymbifera spores in vitro (ratio 1:5). AM control of fungal growth, adherence/phagocytosis, and oxidative burst were assessed using optical densities by spectrophotometer, flow cytometry, and 2', 7'-dichlorofluoresceine diacetate fluorescence, respectively. Cortisone acetate at 500 mg/kg, at D-3 and at D0, led to pulmonary invasive infection at D3. Co-incubated spores and AMs from corticosteroid-treated mice had significantly higher absorbance (fungal growth) than co-incubated spores and control AMs, at 24 h (P = .025), 36 h (P = .004), and 48 h (P = .001). Colocalization of spores with AMs from corticosteroid-treated mice was significantly lower than for control AMs (7.6 ± 1.9% vs 22.3 ± 5.8%; P = .003), reflecting spore adherence and phagocytosis inhibition. Finally, oxidative burst was significantly increased when control AMs were incubated with spores (P = 0.029), while corticosteroids hampered oxidative burst from treated AMs (P = 0.321). Corticosteroids enhanced fungal growth of L. corymbifera through AM phagocytosis inhibition and burst oxidative decrease in our ex vivo model. Lay Summary The aim of this study was to describe the impact of corticosteroids on alveolar macrophage (AM) capacities to control Mucorales growth in a new murine ex vivo model. Corticosteroids enhanced fungal growth of L. corymbifera through AM phagocytosis inhibition and burst oxidative decrease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helal F. Hetta ◽  
Israa M. S. Al-Kadmy ◽  
Saba Saadoon Khazaal ◽  
Suhad Abbas ◽  
Ahmed Suhail ◽  
...  

AbstractWe aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.


2018 ◽  
Vol 8 (1) ◽  
pp. 20-26
Author(s):  
Asim Rizvi ◽  
Sean T. Fitzgerald ◽  
Kent D. Carlson ◽  
Dan Dragomir Daescu ◽  
Waleed Brinjikji ◽  
...  

Background: “Remote aspiration,” using suction from the proximal internal carotid artery (ICA) to open terminus occlusions, has been reported in small case series. However, it remains unclear whether remote aspiration is feasible for middle cerebral artery occlusions in the setting of potential inflow from communicating arteries. We performed an in vitro study to assess whether suction applied at various locations proximal to an occlusion could successfully aspirate the clot. Methods: A glass model of 4 mm inner diameter (ID) with 1 mm distal narrowing and 2 mm side branch to simulate a communicating artery was constructed. A proximal side branch was placed to simulate inflow from the proximal ICA. The impact of three different-sized catheters (ID 0.088, 0.070, and 0.056 in) on histologically different (red blood cell-cell rich, fibrin-rich, and mixed) clot analogues was tested with the catheter tip placed remotely either distal or proximal to the collateral branch. Aspiration was attempted with (1) open system (flow in both the ICA and the collateral branch, (2) flow arrest with open collateral (no flow in the ICA, but flow in the collateral branch), and (3) closed system (no flow in either the ICA or the collateral branch). The outcome was success or failure of remote aspiration. Results: For the 0.088-in catheter, remote aspiration was successful in all conditions. For the 0.070-in catheter, remote aspiration was unsuccessful without proximal flow arrest, but was successful in all other scenarios. For the 0.056-in catheter, remote aspiration was successful only with complete flow arrest. Conclusions: In a noncollapsible system, remote aspiration can be successfully achieved even in the setting of prominent branch arteries by using relatively large aspiration catheters. Proximal flow arrest may facilitate successful remote aspiration for some catheter sizes.


2018 ◽  
Vol 9 (2) ◽  
pp. 237 ◽  
Author(s):  
KiranRahul Halkai ◽  
JayashreeA Mudda ◽  
Vasundhara Shivanna ◽  
Vandana Rathod ◽  
Rahul Halkai

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Noelle Zurmühl ◽  
Anna Schmitt ◽  
Ulrike Formentini ◽  
Johannes Weiss ◽  
Heike Appel ◽  
...  

Abstract Background Human plasmacytoid dendritic cells (pDC) have a dual role as interferon-producing and antigen-presenting cells. Their relevance for allergic diseases is controversial. and the impact of pDC on allergic immune responses is poorly understood. Methods This in vitro study on human pDC isolated from peripheral blood was designed to compare side by side the uptake of three clinically relevant representative allergens: fluorochrome-labeled house dust mite Der p 1, Bee venom extract from Apis mellifera (Api) and the food allergen OVA analyzed flow cytometry and confocal microscopy. Results We found that the internalization and its regulation by TLR9 ligation was significantly different between allergens in terms of time course and strength of uptake. Api and OVA uptake in pDC of healthy subjects was faster and reached higher levels than Der p 1 uptake. CpG ODN 2006 suppressed OVA uptake and to a lesser extent Der p 1, while Api internalization was not affected. All allergens colocalized with LAMP1 and EEA1, with Api being internalized particularly fast and reaching highest intracellular levels in pDC. Of note, we could not determine any specific differences in antigen uptake in allergic compared with healthy subjects. Conclusions To our knowledge this is the first study that directly compares uptake regulation of clinically relevant inhalative, injective and food allergens in pDC. Our findings may help to explain differences in the onset and severity of allergic reactions as well as in the efficiency of AIT.


Sign in / Sign up

Export Citation Format

Share Document