scholarly journals Anti-Toxoplasma Effects of Silver Nanoparticles Based on Ginger Extract: An in Vitro Study

2020 ◽  
Vol 7 (4) ◽  
Author(s):  
Amir KarimiPourSaryazdi ◽  
Pooya Tavakoli ◽  
Mohammad Barati ◽  
Fatemeh Ghaffarifar ◽  
Ali Dalir Ghaffari ◽  
...  

Background: Toxoplasmosis is a tropical disease that is opportunistic in immunocompromised patients. Objectives: In this research, our goal was to assess the anti-parasitic effect of silver nanoparticles (Ag-NPs) based on ginger extract on T. gondii tachyzoites. Methods: This study was conducted to assess the effects of various concentrations of nanoparticles on the parasite using light microscopy. The MTT assay was also conducted to evaluate the toxic effects of silver nanoparticles based on ginger extract on macrophage cells. In addition, the potential apoptosis of T. gondii by silver NPs was assessed using the flow cytometry technique. Results: Based on the tachyzoite assay using microscopic examination, it was observed that the higher the NPs concentration and the longer the parasite’s exposure to NPs, the greater the lethal effect of NPs on tachyzoites. The IC50 (inhibitory concentration) for NPs against T. gondii tachyzoites was 2 ppm. Also, according to the MTT assay, the 40 ppm concentration of nanoparticles had the most toxic impact on macrophages. Moreover, silver NPs led to apoptosis in approximately 55.22% of tachyzoites based on the flow cytometry technique. Conclusions: Based on the above results, it is concluded that silver nanoparticles based on ginger extract have a lethal effect on T. gondii and induce apoptosis in this parasite. This study encourages further studies in vivo.

2021 ◽  
Author(s):  
Constantinos Chrysikopoulos ◽  
Anastasios A. Malandrakis ◽  
Nektarios Kavroulakis ◽  
Anthi Stefanarou

<div><span>The potential of silver nanoparticles (Ag-NPs) to control plant pathogen <em>Monilia</em><em>fructicola </em>and to deter environmental contamination by reducing fungicide doses was evaluated <em>in vitro </em>and <em>in vivo. </em> </span>F<span>ungitoxicity screening </span>of <em><span>M. fructicola </span></em><span>isolates resulted in the detection of 18 benzimidazole-resistant (BEN-R) isolates with reduced sensitivity to fungicides  thiophanate methyl (TM)  and carbendazim. All resistant isolates caried the E198A resistance mutation in their </span><em><span>β</span>-</em>tubulin gene, target site of the benzimidazole fungicides. <span>Ag-NPs could effectively control both sensitive (BEN-S) and resistant isolates while the combination of Ag-NPs with TM significantly enhanced their fungitoxic effect both <em>in vitro </em>and in apple fruit tests. The positive correlation observed between Ag-NPs and TM+Ag-NPs treatments indicates a mixture-enhanced Ag-NPs activity/availability as a possible mechanism of synergy. No correlation between Ag-NPs  and AgNO<sub>3 </sub>could  be found suggesting difference(s) in the fungitoxic mechanism of action between Nps and their bulk/ionic counterparts. Indications of the involvement of energy (ATP) metabolism in the mode of action of Ag-NPs were also evident by the synergy observed between Ag-NPs and the </span>oxidative phosphorylation<span>-uncoupler fluazinam (FM) against both BEN-R and BEN-S phenotypes. The role of silver ions release on the inhibitory action of Ag-NPs against the fungusis probably limited since the AgNPs/NaCl combination enhanced fungitoxicity, a fact that could not be justified by the expected binding of silver with chlorine ions. Concluding, Ag-NPs can be effectively used as a means of controlling both BEN-S and BEN-R <em>M. </em><em>fructicola </em>isolates </span>while <span>their combination with conventional fungicides should aid anti-resistant strategies and reduce the environmental impact of synthetic fungicides by reducing effective doses to the control the pathogen.</span></div>


NANO ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 2050163
Author(s):  
Hongkun Gao ◽  
Ping Fan ◽  
Qizhen Xu ◽  
Yiting Li ◽  
Jianxin Wang ◽  
...  

Melanoma, one of the most malignant tumors, is difficult to treat due to its high drug resistance. Silver nanoparticles (AgNPs) are widely used as antimicrobial agents in biomedical fields. In this study, the spherical AgNPs with average sizes of 5[Formula: see text]nm were prepared using a dopamine reduction method. The in vitro study shows that AgNPs with the concentrations of 0.5[Formula: see text][Formula: see text]g/mL and 1[Formula: see text][Formula: see text]g/mL exhibit good biocompatibility to 3T3L1 fibroblast cells. AgNPs with the same concentrations significantly inhibited the growth of B16 melanoma cells. In culture with B16 cells, AgNPs induced intracellular oxidative stress by generating the reactive oxygen species and reducing the superoxide dismutase, which further reduces the mitochondrial membrane potential. Moreover, the damage in mitochondria could activate mitochondrion-mediated cell apoptosis. The B16 cells apoptosis was analyzed by FITC-Annexin V/propidium iodide double staining assay, which confirms that AgNPs caused the abundance of apoptotic cells in different stages. Thus, AgNPs displayed the antitumor activity in vitro. Then, the therapeutic efficacy in vivo was evaluated in mice-bearing B16 melanoma tumors. The obtained results show the antitumor ability of AgNPs and provide a potential strategy for cancer treatment.


2012 ◽  
Vol 14 (4) ◽  
Author(s):  
Priscila Tavares ◽  
Fernanda Balbinot ◽  
Hugo Martins de Oliveira ◽  
Gabriela Elibio Fagundes ◽  
Mireli Venâncio ◽  
...  

2020 ◽  
Vol 38 (1B) ◽  
pp. 1-5
Author(s):  
Ruqayah A. Salman ◽  
Abdulrahman K. Ali ◽  
Amenah Ali Salman

The study aims to investigate the effects of silver nanoparticles (Ag NPs) on the seminiferous tubules in Albino rats. Several in vitro studies have been performed in different cell models, using various nanoparticles. Pure and spherical AgNPs with an average size of 30 nm, was injected into two groups of male albino rats (6 rats for each group) in different doses. Histopathological changes in testis tissues were showed a harmful effect of the silver nanoparticles, manifested by reducing the number of spermatogenic cells, and a decrease in the number of leyidg´s cells (group 1), and hypotrophy in seminiferous and enlargement in interstitial spaces in group 2.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Stefano Sivolella ◽  
Edoardo Stellini ◽  
Giulia Brunello ◽  
Chiara Gardin ◽  
Letizia Ferroni ◽  
...  

Silver (Ag) ions have well-known antimicrobial properties and have been applied as nanostrategies in many medical and surgical fields, including dentistry. The use of silver nanoparticles (Ag NPs) may be an option for reducing bacterial adhesion to dental implant surfaces and preventing biofilm formation, containing the risk of peri-implant infections. Modifying the structure or surface of bone grafts and membranes with Ag NPs may also prevent the risk of contamination and infection that are common when alveolar bone augmentation techniques are used. On the other hand, Ag NPs have revealed some toxic effects on cellsin vitroandin vivoin animal studies. In this setting, the aim of the present paper is to summarize the principle behind Ag NP-based devices and their clinical applications in alveolar bone and dental implant surgery.


Author(s):  
Seham M. Hamed ◽  
Eman S. Hagag ◽  
Neveen Abd El-Raouf

Abstract Background Cyanobacterium-based silver nanoparticles are considered not only as an efficient nano-nematicide but also as a bio-stimulant material for plant growth. They could be employed as a part of an integrated program for controlling some plant diseases. Results In this study, silver nanoparticles (Ag-NPs) were biosynthesized from aqueous extract of the cyanobacterium, Nostoc sp. PCC7524. Full characterization of the biosynthesized Ag-NPs was monitored by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction pattern, Zeta sizer, and Fourier transform infrared spectroscopy. In vitro assay against the root-knot nematode Meloidogyne javanica showed that Ag-NPs significantly decreased egg hatching of M. javanica at different applied concentrations (3, 6, 12, 25, and 50%, v/v). Fifty percent of Ag-NPs induced the highest reduction percent (94.66%). Moreover, Ag-NPs and AgNO3 significantly increased the percentages of larval mortality of the second-stage juveniles (J2) with concentration and time-dependent responses. Ag-NPs or AgNO3 at 2.4 ml/l, 24 h, completely inhibited the growth of J2 compared to 23% inhibition using aqueous cyanobacterial extract (ACE). In vivo effect of Ag-NPs on faba bean-infected plant under greenhouse conditions was achieved by treating soil with three different concentrations of 1, 2, and 3 ml/kg soil over two consecutive seasons. Ag-NPs significantly reduced root galling from 39.6 to 78.7% and J2 population in the soils from 32.2% to 86.7% in the 2018 season and from 21.9 to 78.1% and 40.0 to 81.0% in the 2019 season, respectively. Moreover, 3 ml/kg soil of Ag-NP treatment showed statistically comparable effects to that of vydate nematicide but with remarkable enhancement of faba bean growth parameters as compared to those of vydate or AgNO3 treatments in the two seasons. Conclusions The considerable in vitro and in vivo nematicidal potential of the cyanobacterium-based Ag-NPs, besides their bio-stimulant effect on plant growth, makes them feasible for the biological control of M. javanica.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2653
Author(s):  
Adam Wawrzynkiewicz ◽  
Wioletta Rozpedek-Kaminska ◽  
Grzegorz Galita ◽  
Monika Lukomska-Szymanska ◽  
Barbara Lapinska ◽  
...  

There is no consensus in the literature regarding the potential toxicity of universal dental adhesives (UDA). Being used in close proximity to the pulp, their biocompatibility should be an important factor in dental research. The aim of the present study was to evaluate the biocompatibility of UDA in an in vitro model. The study was performed using a monocyte/macrophage peripheral blood SC cell line (ATCC CRL-9855) on four specific UDA, namely: All-Bond Universal (Bisco); CLEARFIL Universal Bond Quick (Kuraray); G-Premio BOND (GC); Single Bond Universal (3M ESPE). The cytotoxicity of the investigated UDA was measured using the XTT colorimetric assay. The genotoxicity of the analyzed compounds was evaluated using an alkaline version of the comet assay. Furthermore, flow cytometry (FC) apoptosis detection was performed using the FITC Annexin V Apoptosis Detection Kit I. FC cell-cycle arrest assessment was performed using propidium iodide staining. The study observed significant differences in the toxicity of the UDA that were tested, as G-Premio BOND showed significant in vitro toxicity in all of the tests performed, while All-Bond Universal, CLEARFIL Universal Bond Quick and Single Bond Universal did not present any significant toxic effects toward SC cell line. The in vitro toxicity of UDA should be taken into consideration prior to in vivo and clinical studies. The flow cytometry could improve the accuracy of dental materials research and should be incorporated into the standardization criteria.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Juan Hao ◽  
Lingjin Liu ◽  
Ziqian Liu ◽  
Gege Chen ◽  
Yunzhao Xiong ◽  
...  

Objective. To investigate the proliferation effect of aldosterone on renal tubular epithelial cells in vivo and in vitro. Methods. Thirty-two male C57BL/6J mice (20–22 g) were divided randomly into four groups: sham, unilateral nephrectomy (UN), unilateral nephrectomy plus aldosterone infusion (UA), and UA plus eplerenone (UAE). The kidneys were removed 6 weeks after treatment. Expression of proliferating cell nuclear antigen (PCNA) was detected by immunohistochemistry and western blotting. Human kidney proximal tubular epithelial (HK2) and mouse distal convoluted tubule (mDCT) cell lines were stimulated by aldosterone (0, 10−9, 10−8, 10−7, and 10−6 mol/L) in vitro. Cells were collected after 3, 6, 12, 24, 36, and 48 h, and proliferation of each group detected by western blotting, flow cytometry, live imaging, and the MTT assay. In addition, mDCT cells were costimulated with a medium containing a final concentration of 161 mmol/L Na+ and different concentrations of aldosterone, and the number of cells and cellular DNA content was measured by the MTT assay and flow cytometry. Results. Aldosterone could induce a significant increase in the number of PCNA-positive cells in mouse kidneys accompanied by increased deposition of collagen fibers. Eplerenone could inhibit aldosterone-induced cell proliferation and collagen deposition. HK2 cells and mDCT cells administered different concentrations, and different times of aldosterone stimulation failed to cause cell proliferation, and costimulation of aldosterone and salt did not cause proliferation changes in mDCT cells. Conclusions. Aldosterone perfusion can induce proliferation of mouse kidney cells in vivo, and eplerenone can inhibit this change, but aldosterone stimulates HK2 cells and mDCT in vitro without causing their proliferation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maha A. Khalil ◽  
Gamal M. El Maghraby ◽  
Fatma I. Sonbol ◽  
Nanis G. Allam ◽  
Perihan S. Ateya ◽  
...  

Burn wound infections with multidrug-resistant (MDR) bacteria are shown in many countries as severe widespread health threats. Consequently, attention has been devoted to new nanoparticle-based materials in the field of antimicrobial chemotherapy for burn wound infections. This study aimed to evaluate both in vitro and in vivo efficacies of nanoparticle–antibiotic combinations as new classes of materials subjected against MDR Pseudomonas aeruginosa. Out of 40 Gram-negative isolates, 23 P. aeruginosa were recovered from patients with burn wound infections attending different hospitals in Tanta, Egypt. The susceptibility test revealed that 95.7% of P. aeruginosa isolates were MDR with a high incidence of resistance against carbenicillin. Antibacterial activities of silver nanoparticles (Ag-NPs) against the isolates examined showed various inhibition zone diameters ranging from 11 to 17 mm. Strong synergistic efficacy of neomycin was reported in combination with Ag-NPs against MDR P. aeruginosa P8 and P14 isolates. The in vivo effectiveness of various pharmaceutical formulations prepared from a combination of neomycin antibiotic with Ag-NPs in the treatment of induced bacterially infected mice burns showed that maximum healing activity along with faster wound contraction reported with the combination of neomycin-Ag-NPs in the spray formulation. Generally, data indicated that incorporating Ag-NPs in combination with certain antibiotics may be a new, promising application for wound treatments, especially burns infected with MDR P. aeruginosa.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Amin ◽  
Sadaf Hameed ◽  
Asghar Ali ◽  
Farooq Anwar ◽  
Shaukat Ali Shahid ◽  
...  

This study evaluatesin vivoandin vitroanti-Helicobacter pylori (H. pylori)efficacy of silver nanoparticles (Ag-NPs) prepared via a cost-effective green chemistry route whereinPeganum harmalaL. seeds extract was used as a reducing and capping agent. The structural features, as elucidated by surface plasmon resonance spectrophotometry, transmission electron microscopy, and powder X-ray diffraction spectroscopy, revealed the Ag-NPs synthesized to be polydispersed in nature and spherical in shape with 5–40 nm size. A typical Ag-NPs suspension (S5), with size being 15 nm, when testedin vitroagainst forty-two local isolates and two reference strains, showed a considerable anti-H. pyloriactivity. In case ofin vivotrial againstH. pyloriinduced gastritis, after oral administration of 16 mg/kg body weight of S5for seven days, a complete clearance was recorded in male albino rates. In comparative time-killing kinetics, S5exhibited dose- and time-dependent anti-H. pyloriactivity that was almost similar to tetracycline and clarithromycin, less than amoxicillin, but higher than metronidazole. Furthermore, S5was found to be an equally effective anti-H. pyloriagent at low (≤4) and high pH with no drug resistance observed even up to 10 repeated exposures while a significant drug resistance was recorded for most of the standard drugs employed. The present results revealed the potential of the synthesized Ag-NPs as safer bactericidal agents for the treatment ofH. pyloriinduced gastritis.


Sign in / Sign up

Export Citation Format

Share Document