scholarly journals A Machine Learning Approach Based on Automotive Engine Data Clustering for Driver Usage Profiling Classification

Author(s):  
Cephas Alves da Silveira Barreto ◽  
João C. Xavier-Júnior ◽  
Anne M. P. Canuto ◽  
Ivanovitch M. D. Da Silva

The potential for processing car sensing data has increased in recent years due to the development of new technologies. Having this type of data is important, for instance, to analyze the way drivers behave when sitting behind steering wheel. Many studies have addressed the drive behavior by developing smartphone-based telematics systems. However, very little has been done to analyze car usage patterns based on car engine sensor data, and, therefore, it has not been been explored its full potential by considering all sensors within a car engine. Aiming to bridge this gap, this paper proposes the use of Machine Learning techniques (supervised and unsupervised) on automotive engine sensor data to discover drivers’ usage patterns, and to perform classification through a distributed online sensing platform. We believe that such platform can be useful used in different domains, such as fleet management, insurance market, fuel consumption optimization, CO2 emission reduction, among others.

2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


AI Magazine ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 55 ◽  
Author(s):  
Nisarg Vyas ◽  
Jonathan Farringdon ◽  
David Andre ◽  
John Ivo Stivoric

In this article we provide insight into the BodyMedia FIT armband system — a wearable multi-sensor technology that continuously monitors physiological events related to energy expenditure for weight management using machine learning and data modeling methods. Since becoming commercially available in 2001, more than half a million users have used the system to track their physiological parameters and to achieve their individual health goals including weight-loss. We describe several challenges that arise in applying machine learning techniques to the health care domain and present various solutions utilized in the armband system. We demonstrate how machine learning and multi-sensor data fusion techniques are critical to the system’s success.


2021 ◽  
Vol 102 ◽  
pp. 04004
Author(s):  
Jesse Jeremiah Tanimu ◽  
Mohamed Hamada ◽  
Mohammed Hassan ◽  
Saratu Yusuf Ilu

With the advent of new technologies in the medical field, huge amounts of cancerous data have been collected and are readily accessible to the medical research community. Over the years, researchers have employed advanced data mining and machine learning techniques to develop better models that can analyze datasets to extract the conceived patterns, ideas, and hidden knowledge. The mined information can be used as a support in decision making for diagnostic processes. These techniques, while being able to predict future outcomes of certain diseases effectively, can discover and identify patterns and relationships between them from complex datasets. In this research, a predictive model for predicting the outcome of patients’ cervical cancer results has been developed, given risk patterns from individual medical records and preliminary screening tests. This work presents a Decision tree (DT) classification algorithm and shows the advantage of feature selection approaches in the prediction of cervical cancer using recursive feature elimination technique for dimensionality reduction for improving the accuracy, sensitivity, and specificity of the model. The dataset employed here suffers from missing values and is highly imbalanced. Therefore, a combination of under and oversampling techniques called SMOTETomek was employed. A comparative analysis of the proposed model has been performed to show the effectiveness of feature selection and class imbalance based on the classifier’s accuracy, sensitivity, and specificity. The DT with the selected features and SMOTETomek has better results with an accuracy of 98%, sensitivity of 100%, and specificity of 97%. Decision Tree classifier is shown to have excellent performance in handling classification assignment when the features are reduced, and the problem of imbalance class is addressed.


2020 ◽  
Author(s):  
Yosoon Choi ◽  
Jieun Baek ◽  
Jangwon Suh ◽  
Sung-Min Kim

&lt;p&gt;In this study, we proposed a method to utilize a multi-sensor Unmanned Aerial System (UAS) for exploration of hydrothermal alteration zones. This study selected an area (10m &amp;#215; 20m) composed mainly of the andesite and located on the coast, with wide outcrops and well-developed structural and mineralization elements. Multi-sensor (visible, multispectral, thermal, magnetic) data were acquired in the study area using UAS, and were studied using machine learning techniques. For utilizing the machine learning techniques, we applied the stratified random method to sample 1000 training data in the hydrothermal zone and 1000 training data in the non-hydrothermal zone identified through the field survey. The 2000 training data sets created for supervised learning were first classified into 1500 for training and 500 for testing. Then, 1500 for training were classified into 1200 for training and 300 for validation. The training and validation data for machine learning were generated in five sets to enable cross-validation. Five types of machine learning techniques were applied to the training data sets: k-Nearest Neighbors (k-NN), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Deep Neural Network (DNN). As a result of integrated analysis of multi-sensor data using five types of machine learning techniques, RF and SVM techniques showed high classification accuracy of about 90%. Moreover, performing integrated analysis using multi-sensor data showed relatively higher classification accuracy in all five machine learning techniques than analyzing magnetic sensing data or single optical sensing data only.&lt;/p&gt;


2021 ◽  
Author(s):  
Kalum J. Ost ◽  
David W. Anderson ◽  
David W. Cadotte

With the common adoption of electronic health records and new technologies capable of producing an unprecedented scale of data, a shift must occur in how we practice medicine in order to utilize these resources. We are entering an era in which the capacity of even the most clever human doctor simply is insufficient. As such, realizing “personalized” or “precision” medicine requires new methods that can leverage the massive amounts of data now available. Machine learning techniques provide one important toolkit in this venture, as they are fundamentally designed to deal with (and, in fact, benefit from) massive datasets. The clinical applications for such machine learning systems are still in their infancy, however, and the field of medicine presents a unique set of design considerations. In this chapter, we will walk through how we selected and adjusted the “Progressive Learning framework” to account for these considerations in the case of Degenerative Cervical Myeolopathy. We additionally compare a model designed with these techniques to similar static models run in “perfect world” scenarios (free of the clinical issues address), and we use simulated clinical data acquisition scenarios to demonstrate the advantages of our machine learning approach in providing personalized diagnoses.


10.6036/10007 ◽  
2021 ◽  
Vol 96 (5) ◽  
pp. 528-533
Author(s):  
XAVIER LARRIVA NOVO ◽  
MARIO VEGA BARBAS ◽  
VICTOR VILLAGRA ◽  
JULIO BERROCAL

Cybersecurity has stood out in recent years with the aim of protecting information systems. Different methods, techniques and tools have been used to make the most of the existing vulnerabilities in these systems. Therefore, it is essential to develop and improve new technologies, as well as intrusion detection systems that allow detecting possible threats. However, the use of these technologies requires highly qualified cybersecurity personnel to analyze the results and reduce the large number of false positives that these technologies presents in their results. Therefore, this generates the need to research and develop new high-performance cybersecurity systems that allow efficient analysis and resolution of these results. This research presents the application of machine learning techniques to classify real traffic, in order to identify possible attacks. The study has been carried out using machine learning tools applying deep learning algorithms such as multi-layer perceptron and long-short-term-memory. Additionally, this document presents a comparison between the results obtained by applying the aforementioned algorithms and algorithms that are not deep learning, such as: random forest and decision tree. Finally, the results obtained are presented, showing that the long-short-term-memory algorithm is the one that provides the best results in relation to precision and logarithmic loss.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1578 ◽  
Author(s):  
Shun-Nien Yang ◽  
Li-Chiu Chang

Natural disasters have tended to increase and become more severe over the last decades. A preparation measure to cope with future floods is flood forecasting in each particular area for warning involved persons and resulting in the reduction of damage. Machine learning (ML) techniques have a great capability to model the nonlinear dynamic feature in hydrological processes, such as flood forecasts. Internet of Things (IoT) sensors are useful for carrying out the monitoring of natural environments. This study proposes a machine learning-based flood forecast model to predict average regional flood inundation depth in the Erren River basin in south Taiwan and to input the IoT sensor data into the ML model as input factors so that the model can be continuously revised and the forecasts can be closer to the current situation. The results show that adding IoT sensor data as input factors can reduce the model error, especially for those of high-flood-depth conditions, where their underestimations are significantly mitigated. Thus, the ML model can be on-line adjusted, and its forecasts can be visually assessed by using the IoT sensors’ inundation levels, so that the model’s accuracy and applicability in multi-step-ahead flood inundation forecasts are promoted.


Author(s):  
G. Maria Jones ◽  
S. Godfrey Winster

The ever-rapid development of technology in today's world tends to provide us with a dramatic explosion of data, leading to its accumulation and thus data computation has amplified in comparison to the recent past. To manage such complex data, emerging new technologies are enabled specially to identify crime patterns, as crime-related data is escalating. These digital technologies have the potential to manipulate and also alter the pattern. To combat this, machine learning techniques are introduced which have the ability to analyse such voluminous data. In this work, the authors intend to understand and implement machine learning techniques in real time data analysis by means of Python. The detailed explanation in preparing the dataset, understanding, visualizing the data using pandas, and performance measure of algorithm is evaluated.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 299 ◽  
Author(s):  
Georgios Tsaramirsis ◽  
Seyed Buhari ◽  
Mohammed Basheri ◽  
Milos Stojmenovic

Realization of navigation in virtual environments remains a challenge as it involves complex operating conditions. Decomposition of such complexity is attainable by fusion of sensors and machine learning techniques. Identifying the right combination of sensory information and the appropriate machine learning technique is a vital ingredient for translating physical actions to virtual movements. The contributions of our work include: (i) Synchronization of actions and movements using suitable multiple sensor units, and (ii) selection of the significant features and an appropriate algorithm to process them. This work proposes an innovative approach that allows users to move in virtual environments by simply moving their legs towards the desired direction. The necessary hardware includes only a smartphone that is strapped to the subjects’ lower leg. Data from the gyroscope, accelerometer and campus sensors of the mobile device are transmitted to a PC where the movement is accurately identified using a combination of machine learning techniques. Once the desired movement is identified, the movement of the virtual avatar in the virtual environment is realized. After pre-processing the sensor data using the box plot outliers approach, it is observed that Artificial Neural Networks provided the highest movement identification accuracy of 84.2% on the training dataset and 84.1% on testing dataset.


Sign in / Sign up

Export Citation Format

Share Document