scholarly journals Nonlinear Receding-Horizon Control of Rigid Link Robot Manipulators

10.5772/5806 ◽  
2005 ◽  
Vol 2 (1) ◽  
pp. 3 ◽  
Author(s):  
R. Hedjar ◽  
P. Boucher

The approximate nonlinear receding-horizon control law is used to treat the trajectory tracking control problem of rigid link robot manipulators. The derived nonlinear predictive law uses a quadratic performance index of the predicted tracking error and the predicted control effort. A key feature of this control law is that, for their implementation, there is no need to perform an online optimization, and asymptotic tracking of smooth reference trajectories is guaranteed. It is shown that this controller achieves the positions tracking objectives via link position measurements. The stability convergence of the output tracking error to the origin is proved. To enhance the robustness of the closed loop system with respect to payload uncertainties and viscous friction, an integral action is introduced in the loop. A nonlinear observer is used to estimate velocity. Simulation results for a two-link rigid robot are performed to validate the performance of the proposed controller.

Robotica ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Recep Burkan

In this study, a new approach of adaptive control law for controlling robot manipulators using the Lyapunov based theory is derived, thus the stability of an uncertain system is guaranteed. The control law includes a PD feed forward part and a full dynamics feed forward compensation part with the unknown manipulator and payload parameters. The novelty of the obtained result is that an adaptive control algorithm is developed using trigonometric functions depending on manipulator kinematics, inertia parameters and tracking error, and both system parameters and adaptation gain matrix are updated in time.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
N. Ramos-Pedroza ◽  
W. MacKunis ◽  
M. Reyhanoglu

A robust nonlinear control law that achieves trajectory tracking control for unmanned aerial vehicles (UAVs) equipped with synthetic jet actuators (SJAs) is presented in this paper. A key challenge in the control design is that the dynamic characteristics of SJAs are nonlinear and contain parametric uncertainty. The challenge resulting from the uncertain SJA actuator parameters is mitigated via innovative algebraic manipulation in the tracking error system derivation along with a robust nonlinear control law employing constant SJA parameter estimates. A key contribution of the paper is a rigorous analysis of the range of SJA actuator parameter uncertainty within which asymptotic UAV trajectory tracking can be achieved. A rigorous stability analysis is carried out to prove semiglobal asymptotic trajectory tracking. Detailed simulation results are included to illustrate the effectiveness of the proposed control law in the presence of wind gusts and varying levels of SJA actuator parameter uncertainty.


Sign in / Sign up

Export Citation Format

Share Document