scholarly journals Organ- and Site-Specific HOX Gene Expression in Stromal Cells

2021 ◽  
Author(s):  
Masoumeh Mirrahimi ◽  
Caroline Ospelt

HOX genes are a group of evolutionarily conserved genes that encode a family of transcription factors that regulate early developmental morphogenetic processes and continue to be expressed into adulthood. These highly conserved HOX factors play an unquestioned crucial role as master regulators during embryonic vertebrate development and morphogenesis by controlling the three dimensional body plan organization. HOX genes specify regions of the body plan of an embryo along the head-tail axis. They encode proteins that specify the characteristics of ‘position’, ensuring that the correct structures form in the correct places of the body. Expression of HOX is known to persist in many tissues in the postnatal period suggesting the role of these genes not only during development but also for the functioning of tissues throughout life. The tissue-specific pattern of HOX gene expression is inherent in stromal/stem cells of mesenchymal origin, such as mesenchymal stromal cells, fibroblasts, smooth muscle cells, and preadipocytes, enabling them to memorize their topographic location in the form of their HOX code and to fulfill their location-specific functions. In this chapter, we focus on the expression and potential role of HOX genes in adult tissues. We review evidence that site-specific expression of HOX genes is connected to location-specific disease susceptibility and review studies showing that dysregulated expression of HOX genes can be associated with various diseases. By recognizing the importance of site-specific molecular mechanisms in the organ stroma, we gain new insights into the processes underlying the site-specific manifestation of disease.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3921-3921
Author(s):  
Katerina Rejlova ◽  
Alena Musilova ◽  
Martina Slamova ◽  
Karel Fiser ◽  
Karolina Skvarova Kramarzova ◽  
...  

Abstract Homeobox genes (HOX) encode transcription factors that are frequently deregulated in leukemias. Our previous results showed that HOX gene expression differs among genetically characterized subtypes of pediatric acute myeloid leukemia (AML). Specifically, PML-RARa positive AML patients have overall lowest HOX gene expression which positively correlates with expression of histone 3 lysine 27 (H3K27) demethylases - JMJD3 and UTX and negatively with the expression of DNA methyltransferases - DNMT3a and DNMT3b. Interestingly, JMJD3 was already shown to be a direct target of PML-RARa protein (Martens, JH et al, 2010, Cancer Cell). From these findings we postulated a hypothesis that reduced levels of HOX genes in PML-RARa positive AML are a consequence of suppressed expression of histone demethylases resulting in increased H3K27 methylation and/or of elevated levels of DNMTs leading to de novoDNA methylation. We studied the role of histone demethylases and DNMTs in the regulation of HOX gene expression and the effect of treatment in PML-RARa positive cell lines (NB4 and ATRA-resistant clones NB4-LR2 and NB4-MR2). We treated NB4 cell line by all-trans retinoic acid (ATRA; 1uM), which was described to release the differentiation block caused by the presence of PML-RARa and to degrade the fusion protein. We observed that expression of particular HOX genes (HOXA1, HOXA3, HOXA4, HOXA5, HOXA7, HOXB4, HOXB6) measured by qPCR was significantly increased after ATRA treatment. While the level of JMJD3 was significantly increased upon ATRA treatment as well, the expression of UTX did not change. Furthermore, we detected significantly reduced expression of DNMT3b gene. To exclude a non-specific effect of ATRA, independent of PML-RARa, we used resistant clones LR2 and MR2 bearing mutations in retinoic acid-binding domain. HOX gene expression together with JMJD3, UTX and DNMT3b expression did not change upon ATRA treatment. These results confirm the PML-RARa-dependent regulation of HOX genes. To test the role of JMJD3 in the HOX gene expression regulation, we cultured NB4 cells with a specific inhibitor of histone demethylases, GSK-J4 (1 uM, 10 uM), in the presence of ATRA. The co-treatment caused significant decrease in the expression of studied HOX genes (HOXA1, HOXA3, HOXA5, HOXA7, HOXA10, HOXB4, HOXB6) in comparison to ATRA alone which supports the role of JMJD3 in the transcription regulation. Further, we performed chromatin immunoprecipitation (ChIP) to investigate if the changes of HOX gene expression upon ATRA and GSK-J4 treatment would correspond with changes of histone code on HOX gene promoter regions. ATRA treatment caused reduction of repressive histone mark (H3K27me3) on particular HOX gene promoters (HOXA1, HOXA3, HOXA5, HOXA7), by contrast, combinational treatment of ATRA and GSK-J4 reversed this effect. Accordingly, we detected that ATRA/GSK-J4 co-treatment reduced active histone mark H3K4me2. Next we were interested if JMJD3 inhibition would interfere with the differentiation effect of ATRA. As shown previously, ATRA treatment alone caused differentiation of NB4 cell line whereas the combination with GSK-J4 did not reduce the effect. Interestingly, in addition to differentiation it led cells to apoptosis. Combination of drugs (ATRA - 1uM, GSK-J4 - 1, 2, 5uM) increased significantly the percentage of dead cells in comparison to ATRA or GSK treatment alone (GSK-J4 alone vs in combination with ATRA, 1uM - 1.8 fold, 2uM - 2.2 fold, 5 uM - 2.3 fold increase). Next we measured apoptosis in resistant clones LR2 and MR2. In both cases the highest concentration used of GSK-J4 (5uM) in combination with ATRA caused significant increase of dead cells as well (LR2 - 2.1 fold, MR2 - 2.0 fold increase). Our results indicate that JMJD3 is responsible for the regulation of HOX gene expression in PML-RARa positive leukemia since changes of HOX gene expression correspond with histone modifications on the regions of HOX gene promoters. We assume that DNA methylation driven by DNMT3b can also participate in this process. Moreover, our findings demonstrate potential therapeutic implications of GSK-J4 inhibitor in combination with ATRA in patients with acute promyelocytic leukemia who are not responsive to ATRA monotherapy. Supported by P304/12/2214 and GAUK 196616 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 876-876
Author(s):  
Katerina Rejlova ◽  
Karolina Kramarzova ◽  
Meritxell Alberich-Jorda ◽  
Karel Fiser ◽  
Marketa Zaliova ◽  
...  

Abstract Homeobox genes (HOX) encode transcription factors that are frequently deregulated in leukemias. Our previous findings described that HOX gene expression differs among genetically characterized subtypes of pediatric AML with PML-RARa+ patients having the lowest overall HOX gene expression. We observed that HOX gene expression positively correlated with expression of histone 3 lysine 27 (H3K27) demethylases JMJD3 and UTX and negatively with DNA methyltransferase DNMT3b. Interestingly, it has been shown that JMJD3 is a direct target of PML-RARa protein (Martens, JH et al, 2010, Cancer Cell). These findings led us to postulate the hypothesis that reduced levels of HOX genes in PML-RARa+ AML can be caused by the suppressed expression of histone demethylases, such as JMJD3 and UTX, resulting in increased H3K27 methylation and transcription inhibition. We chose PML-RARa+ NB4 cell line to study the role of PML-RARa fusion gene in the regulation of HOX gene expression. To inhibit the effect of PML-RARa we used all-trans retinoic acid (ATRA; 1 uM, 10 uM) which was described to release the block caused by this fusion protein. Expression of particular HOX genes (e.g., HOXA1, HOXA3, HOXA5, HOXA7) together with that of JMJD3 and UTX assessed by qPCR was significantly elevated after ATRA treatment, while gene expression of DNMT3b was decreased. To test whether the reduction in HOX gene expression is directly related to the levels of JMJD3 and UTX, we cultured NB4 cells with a specific inhibitor of these histone demethylases, GSK-J4 (1 uM, 10 uM), in combination with ATRA. This co-treatment led to inhibition of JMJD3 and UTX proteins, followed by significant reduction of HOX genes expression (e.g., HOXA1, HOXA3, HOXA5, HOXA7). This result supports our hypothesis that HOX genes expression is directly related to JMJD3/UTX activity. To determine the effect of ATRA and GSK-J4 on histone marks we have isolated histones by acid extraction and detected the levels of histones by western blot in NB4 ATRA or GSK-J4/ATRA treated cells. We observed that the level of repressive histone methylation mark (trimethylated H3K27; H3K27me3) was decreased after ATRA treatment (activation of JMJD3/UTX) and increased after GSK-J4/ATRA co-treatment (inhibition of JMJD3/UTX). The opposite effect was observed in active histone methylation marks where di- and tri-methylated H3K4 (H3K4me2, H3K4me3) increased after ATRA treatment and decreased after GSK-J4/ATRA co-treatment. H3K9 dimethylated (another repressive histone methylation mark) levels did not change. Next, to investigate the histone code directly in particular HOX genes regions we performed chromatin immunoprecipitation (ChIP) assays. We studied the presence of H3K27me3 and H3K4me2 in 5´UTR genomic region of particular HOX genes (HOXA1, HOXA2, HOXA3, HOXA5, HOXA7) in cells treated with ATRA alone or in the combination with GSK-J4. Preliminary results showed reduction in repressive marks (H3K27me3) upon ATRA treatment, whereas addition of GSK-J4 prevented this decrease. Accordingly, we observed that ATRA/GSK-J4 co-treatment reduced active histone mark H3K4me2. To evaluate the role of DNA methylation in observed expression changes after ATRA treatment we performed bisulfite sequencing of particular promoter sites of HOX genes (e.g., HOXA7, HOXA5). Although we detected decreased DNMT3b gene expression after ATRA treatment there was no change in DNA methylation of CpGs in studied regions. Our results demonstrate that changes in chromatin activity correspond with changes in HOX gene expression. Moreover, ChIP data show direct binding of the modified histones and HOX 5´UTR sites. Our data implicate histone demethylases in regulation of HOX gene expression in PML-RARa+ leukemic blasts. DNA methylation in these particular HOX genes is not involved in the regulation. Elucidating the mechanism of regulation of HOX genes expression can help to understand their role in the leukemogenic process. Supported by GACR P304/12/2214 and GAUK 568213. Disclosures No relevant conflicts of interest to declare.


Development ◽  
2002 ◽  
Vol 129 (5) ◽  
pp. 1225-1238 ◽  
Author(s):  
Cynthia L. Hughes ◽  
Thomas C. Kaufman

The diversity of the arthropod body plan has long been a fascinating subject of study. A flurry of recent research has analyzed Hox gene expression in various arthropod groups, with hopes of gaining insight into the mechanisms that underlie their evolution. The Hox genes have been analyzed in insects, crustaceans and chelicerates. However, the expression patterns of the Hox genes have not yet been comprehensively analyzed in a myriapod. We present the expression patterns of the ten Hox genes in a centipede, Lithobius atkinsoni, and compare our results to those from studies in other arthropods. We have three major findings. First, we find that Hox gene expression is remarkably dynamic across the arthropods. The expression patterns of the Hox genes in the centipede are in many cases intermediate between those of the chelicerates and those of the insects and crustaceans, consistent with the proposed intermediate phylogenetic position of the Myriapoda. Second, we found two ‘extra’ Hox genes in the centipede compared with those in Drosophila. Based on its pattern of expression, Hox3 appears to have a typical Hox-like role in the centipede, suggesting that the novel functions of the Hox3 homologs zen and bicoid were adopted somewhere in the crustacean-insect clade. In the centipede, the expression of the gene fushi tarazu suggests that it has both a Hox-like role (as in the mite), as well as a role in segmentation (as in insects). This suggests that this dramatic change in function was achieved via a multifunctional intermediate, a condition maintained in the centipede. Last, we found that Hox expression correlates with tagmatic boundaries, consistent with the theory that changes in Hox genes had a major role in evolution of the arthropod body plan.


Development ◽  
1991 ◽  
Vol 113 (Supplement_1) ◽  
pp. 187-196 ◽  
Author(s):  
Paul Hunt ◽  
Jenny Whiting ◽  
Ian Muchamore ◽  
Heather Marshall ◽  
Robb Krumlauf

Antennapedia class homeobox genes, which in insects are involved in regional specification of the segmented central regions of the body, have been implicated in a similar role in the vertebrate hindbrain. The development of the hindbrain involves the establishment of compartments which are subsequently made distinct from each other by Hox gene expression, implying that the lineage of neural cells may be an important factor in their development. The hindbrain produces the neural crest that gives rise to the cartilages of the branchial skeleton. Lineage also seems to be important in the neural crest, as experiments have shown that the crest will form cartilages appropriate to its level of origin when grafted to a heterotopic location. We show how the Hox genes could also be involved in patterning the mesenchymal structures of the branchial skeleton. Recently it has been proposed that the rhombomererestricted expression pattern of Hox 2 genes is the result of a tight spatially localised induction from underlying head mesoderm, in which a prepattern of Hox expression is visible. We find no evidence for this model, our data being consistent with the idea that the spatially localised expression pattern is a result of segmentation processes whose final stages are intrinsic to the neural plate. We suggest the following model for patterning in the branchial region. At first a segment-restricted code of Hox gene expression becomes established in the neuroepithelium and adjacent presumptive neural crest. This expression is then maintained in the neural crest during migration, resulting in a Hox code in the cranial ganglia and branchial mesenchyme that reflects the crest's rhombomere of origin. The final stage is the establishment of Hox 2 expression in the surface ectoderm which is brought into contact with neural crest-derived branchial mesenchyme. The Hox code of the branchial ectoderm is established later in development than that of the neural plate and crest, and involves the same combination of genes as the underlying crest. Experimental observations suggest the idea of an instructive interaction between branchial crest and its overlying ectoderm, which would be consistent with our observations. The distribution of clusters of Antennapedia class genes within the animal kingdom suggests that the primitive chordates ancestral to vertebrates had at least one Hox cluster. The origin of the vertebrates is thought to have been intimately linked to the appearance of the neural crest, initially in the branchial region. Our data are consistent with the idea that the branchial region of the head arose in evolution before the more anterior parts, the development of the branchial region employing the Hox genes in a more determinate patterning system. In this scenario, the anterior parts of the head arose subsequently, which may explain the greater importance of interactions in their development, and the fact that Antennapedia class Hox genes are not expressed there.


1995 ◽  
Vol 349 (1329) ◽  
pp. 313-319 ◽  

Homeobox genes encode transcription factors that carry out diverse roles during development. They are widely distributed among eukaryotes, but appear to have undergone an extensive radiation in the earliest metazoa, to generate a range of homeobox subclasses now shared between diverse metazoan phyla. The Hox genes comprise one of these subfamilies, defined as much by conserved chromosomal organization and expression as by sequence characteristics. These Hox genes act as markers of position along the antero—posterior axis of the body in nematodes, arthropods, chordates, and by implication, most other triploblastic phyla. In the arthropods this role is visualized most clearly in the control of segment identity. Exactly how Hox genes control the structure of segments is not yet understood, but their differential deployment between segments provides a model for the basis of segment diversity. Within the arthropods, distantly related taxonomic groups with very different body plans (insects, crustaceans) may share the same set of Hox genes. The expression of these Hox genes provides a new character to define the homology of different body regions. Comparisons of Hox gene deployment between insects and a branchiopod crustacean suggest a novel model for the derivation of the insect body plan.


Development ◽  
2000 ◽  
Vol 127 (11) ◽  
pp. 2239-2249 ◽  
Author(s):  
A. Abzhanov ◽  
T.C. Kaufman

Representatives of the Insecta and the Malacostraca (higher crustaceans) have highly derived body plans subdivided into several tagma, groups of segments united by a common function and/or morphology. The tagmatization of segments in the trunk, the part of the body between head and telson, in both lineages is thought to have evolved independently from ancestors with a distinct head but a homonomous, undifferentiated trunk. In the branchiopod crustacean, Artemia franciscana, the trunk Hox genes are expressed in broad overlapping domains suggesting a conserved ancestral state (Averof, M. and Akam, M. (1995) Nature 376, 420–423). In comparison, in insects, the Antennapedia-class genes of the homeotic clusters are more regionally deployed into distinct domains where they serve to control the morphology of the different trunk segments. Thus an originally Artemia-like pattern of homeotic gene expression has apparently been modified in the insect lineage associated with and perhaps facilitating the observed pattern of tagmatization. Since insects are the only arthropods with a derived trunk tagmosis tested to date, we examined the expression patterns of the Hox genes Antp, Ubx and abd-A in the malacostracan crustacean Porcellio scaber (Oniscidae, Isopoda). We found that, unlike the pattern seen in Artemia, these genes are expressed in well-defined discrete domains coinciding with tagmatic boundaries which are distinct from those of the insects. Our observations suggest that, during the independent tagmatization in insects and malacostracan crustaceans, the homologous ‘trunk’ genes evolved to perform different developmental functions. We also propose that, in each lineage, the changes in Hox gene expression pattern may have been important in trunk tagmatization.


2010 ◽  
Vol 10 ◽  
pp. 2207-2214 ◽  
Author(s):  
A. J. Durston ◽  
H. J. Jansen ◽  
S. A. Wacker

We review a recently discovered developmental mechanism. Anterior-posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early nonorganizer mesoderm (NOM) and the Spemann organizer (SO). The timer is characterized by temporally collinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the NOM) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilized by signals from the SO. The NOM and the SO undergo timed interactions due to morphogenetic movements during gastrulation, which lead to the formation of an anterior-posterior axial pattern and stable Hox gene expression. When separated from each other, neither the NOM nor the SO is able to induce anterior-posterior pattern formation of the trunk. We present a model describing that the NOM acquires transiently stable hox codes and spatial collinearity, and that morphogenetic movements then continually bring new cells from the NOM within the range of SO signals that cause transfer of the mesodermal pattern to a stable pattern in neurectoderm and, thereby, create patterned axial structures. In doing so, the age of the NOM, but not the age of the SO, defines positional values along the anterior-posterior axis. We postulate that the temporal information from the NOM is linked to mesodermal Hox expression. The role of the SO for trunk patterning turns out to be the induction of neural tissue as prerequisite for neural hox patterning. Apparently, development of a stable anterior-posterior pattern requires neural hox patterning. We believe that this mechanism represents a developmental principle.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Seema Bhatlekar ◽  
Jeremy Z. Fields ◽  
Bruce M. Boman

HOX genes encode an evolutionarily conserved set of transcription factors that control how the phenotype of an organism becomes organized during development based on its genetic makeup. For example, in bilaterian-type animals, HOX genes are organized in gene clusters that encode anatomic segment identity, that is, whether the embryo will form with bilateral symmetry with a head (anterior), tail (posterior), back (dorsal), and belly (ventral). Although HOX genes are known to regulate stem cell (SC) differentiation and HOX genes are dysregulated in cancer, the mechanisms by which dysregulation of HOX genes in SCs causes cancer development is not fully understood. Therefore, the purpose of this manuscript was (i) to review the role of HOX genes in SC differentiation, particularly in embryonic, adult tissue-specific, and induced pluripotent SC, and (ii) to investigate how dysregulated HOX genes in SCs are responsible for the development of colorectal cancer (CRC) and acute myeloid leukemia (AML). We analyzed HOX gene expression in CRC and AML using information from The Cancer Genome Atlas study. Finally, we reviewed the literature on HOX genes and related therapeutics that might help us understand ways to develop SC-specific therapies that target aberrant HOX gene expression that contributes to cancer development.


Development ◽  
2000 ◽  
Vol 127 (19) ◽  
pp. 4265-4275 ◽  
Author(s):  
J.L. Nowicki ◽  
A.C. Burke

The successful organization of the vertebrate body requires that local information in the embryo be translated into a functional, global pattern. Somite cells form the bulk of the musculoskeletal system. Heterotopic transplants of segmental plate along the axis from quail to chick were performed to test the correlation between autonomous morphological patterning and Hox gene expression in somite subpopulations. The data presented strengthen the correlation of Hox gene expression with axial specification and focus on the significance of Hox genes in specific derivatives of the somites. We have defined two anatomical compartments of the body based on the embryonic origin of the cells making up contributing structures: the dorsal compartment, formed from purely somitic cell populations; and the ventral compartment comprising cells from somites and lateral plate. The boundary between these anatomical compartments is termed the somitic frontier. Somitic tissue transplanted between axial levels retains both original Hox expression and morphological identity in the dorsal compartment. In contrast, migrating lateral somitic cells crossing the somitic frontier do not maintain donor Hox expression but apparently adopt the Hox expression of the lateral plate and participate in the morphology appropriate to the host level. Dorsal and ventral compartments, as defined here, have relevance for experimental manipulations that influence somite cell behavior. The correlation of Hox expression profiles and patterning behavior of cells in these two compartments supports the hypothesis of independent Hox codes in paraxial and lateral plate mesoderm.


Tumor Biology ◽  
2020 ◽  
Vol 42 (5) ◽  
pp. 101042832091805 ◽  
Author(s):  
Danielle Barbosa Brotto ◽  
Ádamo Davi Diógenes Siena ◽  
Isabela Ichihara de Barros ◽  
Simone da Costa e Silva Carvalho ◽  
Bruna Rodrigues Muys ◽  
...  

Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or “hallmarks”) and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.


Sign in / Sign up

Export Citation Format

Share Document