scholarly journals Hox genes and morphological identity: axial versus lateral patterning in the vertebrate mesoderm

Development ◽  
2000 ◽  
Vol 127 (19) ◽  
pp. 4265-4275 ◽  
Author(s):  
J.L. Nowicki ◽  
A.C. Burke

The successful organization of the vertebrate body requires that local information in the embryo be translated into a functional, global pattern. Somite cells form the bulk of the musculoskeletal system. Heterotopic transplants of segmental plate along the axis from quail to chick were performed to test the correlation between autonomous morphological patterning and Hox gene expression in somite subpopulations. The data presented strengthen the correlation of Hox gene expression with axial specification and focus on the significance of Hox genes in specific derivatives of the somites. We have defined two anatomical compartments of the body based on the embryonic origin of the cells making up contributing structures: the dorsal compartment, formed from purely somitic cell populations; and the ventral compartment comprising cells from somites and lateral plate. The boundary between these anatomical compartments is termed the somitic frontier. Somitic tissue transplanted between axial levels retains both original Hox expression and morphological identity in the dorsal compartment. In contrast, migrating lateral somitic cells crossing the somitic frontier do not maintain donor Hox expression but apparently adopt the Hox expression of the lateral plate and participate in the morphology appropriate to the host level. Dorsal and ventral compartments, as defined here, have relevance for experimental manipulations that influence somite cell behavior. The correlation of Hox expression profiles and patterning behavior of cells in these two compartments supports the hypothesis of independent Hox codes in paraxial and lateral plate mesoderm.

Development ◽  
1998 ◽  
Vol 125 (3) ◽  
pp. 393-406 ◽  
Author(s):  
V.E. Prince ◽  
C.B. Moens ◽  
C.B. Kimmel ◽  
R.K. Ho

The developing hindbrain is organized into a series of segments termed rhombomeres which represent lineage restricted compartments correlating with domains of gene expression and neuronal differentiation. In this study, we investigate the processes of hindbrain segmentation and the acquisition of segmental identity by analyzing the expression of zebrafish hox genes in the hindbrains of normal fish and fish with a loss-of-function mutation in the segmentation gene valentino (val, the homologue of mouse kreisler; Moens, C. B., Cordes, S. P. Giorgianni, M. W., Barsh, G. S. and Kimmel, C. B. (1998). Development 125, 381–391). We find that zebrafish hox genes generally have similar expression profiles to their murine and avian counterparts, although there are several differences in timing and spatial extent of expression which may underlie some of the functional changes that have occurred along the separate evolutionary lineages of teleosts and tetrapods. Our analysis of hox gene expression in val- embryos confirms that the val gene product is important for subdivision of the presumptive rhombomere 5 and 6 territory into definitive rhombomeres, suggests that the val gene product plays a critical role in regulating hox gene transcription, and indicates that some neural crest cells are inappropriately specified in val- embryos. Our analysis of gene expression at several developmental stages has allowed us to infer differences between primary and secondary defects in the val mutant: we find that extended domains of expression for some hox genes are secondary, late phenomena potentially resulting from inappropriate cell mixing or lack of normal inter-rhombomeric interactions in the caudal hindbrain.


Development ◽  
1991 ◽  
Vol 113 (Supplement_1) ◽  
pp. 187-196 ◽  
Author(s):  
Paul Hunt ◽  
Jenny Whiting ◽  
Ian Muchamore ◽  
Heather Marshall ◽  
Robb Krumlauf

Antennapedia class homeobox genes, which in insects are involved in regional specification of the segmented central regions of the body, have been implicated in a similar role in the vertebrate hindbrain. The development of the hindbrain involves the establishment of compartments which are subsequently made distinct from each other by Hox gene expression, implying that the lineage of neural cells may be an important factor in their development. The hindbrain produces the neural crest that gives rise to the cartilages of the branchial skeleton. Lineage also seems to be important in the neural crest, as experiments have shown that the crest will form cartilages appropriate to its level of origin when grafted to a heterotopic location. We show how the Hox genes could also be involved in patterning the mesenchymal structures of the branchial skeleton. Recently it has been proposed that the rhombomererestricted expression pattern of Hox 2 genes is the result of a tight spatially localised induction from underlying head mesoderm, in which a prepattern of Hox expression is visible. We find no evidence for this model, our data being consistent with the idea that the spatially localised expression pattern is a result of segmentation processes whose final stages are intrinsic to the neural plate. We suggest the following model for patterning in the branchial region. At first a segment-restricted code of Hox gene expression becomes established in the neuroepithelium and adjacent presumptive neural crest. This expression is then maintained in the neural crest during migration, resulting in a Hox code in the cranial ganglia and branchial mesenchyme that reflects the crest's rhombomere of origin. The final stage is the establishment of Hox 2 expression in the surface ectoderm which is brought into contact with neural crest-derived branchial mesenchyme. The Hox code of the branchial ectoderm is established later in development than that of the neural plate and crest, and involves the same combination of genes as the underlying crest. Experimental observations suggest the idea of an instructive interaction between branchial crest and its overlying ectoderm, which would be consistent with our observations. The distribution of clusters of Antennapedia class genes within the animal kingdom suggests that the primitive chordates ancestral to vertebrates had at least one Hox cluster. The origin of the vertebrates is thought to have been intimately linked to the appearance of the neural crest, initially in the branchial region. Our data are consistent with the idea that the branchial region of the head arose in evolution before the more anterior parts, the development of the branchial region employing the Hox genes in a more determinate patterning system. In this scenario, the anterior parts of the head arose subsequently, which may explain the greater importance of interactions in their development, and the fact that Antennapedia class Hox genes are not expressed there.


Development ◽  
2000 ◽  
Vol 127 (11) ◽  
pp. 2239-2249 ◽  
Author(s):  
A. Abzhanov ◽  
T.C. Kaufman

Representatives of the Insecta and the Malacostraca (higher crustaceans) have highly derived body plans subdivided into several tagma, groups of segments united by a common function and/or morphology. The tagmatization of segments in the trunk, the part of the body between head and telson, in both lineages is thought to have evolved independently from ancestors with a distinct head but a homonomous, undifferentiated trunk. In the branchiopod crustacean, Artemia franciscana, the trunk Hox genes are expressed in broad overlapping domains suggesting a conserved ancestral state (Averof, M. and Akam, M. (1995) Nature 376, 420–423). In comparison, in insects, the Antennapedia-class genes of the homeotic clusters are more regionally deployed into distinct domains where they serve to control the morphology of the different trunk segments. Thus an originally Artemia-like pattern of homeotic gene expression has apparently been modified in the insect lineage associated with and perhaps facilitating the observed pattern of tagmatization. Since insects are the only arthropods with a derived trunk tagmosis tested to date, we examined the expression patterns of the Hox genes Antp, Ubx and abd-A in the malacostracan crustacean Porcellio scaber (Oniscidae, Isopoda). We found that, unlike the pattern seen in Artemia, these genes are expressed in well-defined discrete domains coinciding with tagmatic boundaries which are distinct from those of the insects. Our observations suggest that, during the independent tagmatization in insects and malacostracan crustaceans, the homologous ‘trunk’ genes evolved to perform different developmental functions. We also propose that, in each lineage, the changes in Hox gene expression pattern may have been important in trunk tagmatization.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2318-2318
Author(s):  
Damian P.J. Finnegan ◽  
Michael F. Quinn ◽  
Mervyn Humphreys ◽  
Terence R.J. Lappin ◽  
Mary Frances McMullin ◽  
...  

Abstract The acute myeloid leukemias (AMLs) are a heterogeneous group of hematological malignancies with diverse clinical outcomes. Pre-treatment karyotype analysis identifies biologically distinct subgroups and is currently used as a predictor of response to induction chemotherapy and risk of relapse. Cases may be stratified into one of three prognostic groups as follows: relatively favorable prognosis [t(8;21), t(15;17) and inv(16)]; adverse prognosis [−5/del(5q), −7, abnormalities of chromosome 3q and complex karyotype]; and intermediate prognosis [remainder including normal karyotype]. HOX genes encode master transcription factors which regulate key developmental processes including differentiation, proliferation and apoptosis. Humans have 39 HOX genes and multiple lines of evidence implicate their deregulated expression in the pathogenesis of AML. Drabkin et al. (Leukemia2002; 16: 186–95) have reported that AMLs with a relatively favorable prognostic karyotype are associated with low levels of HOX gene expression whereas AMLs with an adverse prognostic karyotype have higher levels of expression. To further characterize HOX gene expression in cytogenetic prognostic groups we determined the expression profiles of 26 HOX genes by real-time quantitative PCR (Q-PCR) in diagnostic samples, representative of the three prognostic groups, from 26 patients with de novo AML. Profiles were then analyzed using Artificial Neural Network based computational approaches to identify a subset of HOX genes which could discriminate between prognostic groups in a predictive fashion. Predictive models were developed for each prognostic group. Predictive classification performance for prognostic groups based on blind data of 88%, 92%, and 97% (with equal sensitivity and specificity) were achieved for the three prognostic groups. The models were interrogated to determine the nature of the relationship between the key HOX genes identified and prognostic group. The relatively favorable prognosis group was primarily defined by downregulation of HOXA5 and upregulation of HOXC4. The intermediate prognosis group was characterized by upregulation of HOXB3 and downregulation of HOXD10 and the adverse prognosis group by downregulation of both HOXC5 and HOXD3. Although the sample size is small, the results show that Artificial Neural Network based computational approaches are capable of further characterizing HOX gene expression within AML prognostic groups as determined by presenting karyotype and that measuring the expression levels of a small number of HOX genes at diagnosis can provide useful clinical information in cases where karyotype analysis has been unsuccessful.


2021 ◽  
Author(s):  
Masoumeh Mirrahimi ◽  
Caroline Ospelt

HOX genes are a group of evolutionarily conserved genes that encode a family of transcription factors that regulate early developmental morphogenetic processes and continue to be expressed into adulthood. These highly conserved HOX factors play an unquestioned crucial role as master regulators during embryonic vertebrate development and morphogenesis by controlling the three dimensional body plan organization. HOX genes specify regions of the body plan of an embryo along the head-tail axis. They encode proteins that specify the characteristics of ‘position’, ensuring that the correct structures form in the correct places of the body. Expression of HOX is known to persist in many tissues in the postnatal period suggesting the role of these genes not only during development but also for the functioning of tissues throughout life. The tissue-specific pattern of HOX gene expression is inherent in stromal/stem cells of mesenchymal origin, such as mesenchymal stromal cells, fibroblasts, smooth muscle cells, and preadipocytes, enabling them to memorize their topographic location in the form of their HOX code and to fulfill their location-specific functions. In this chapter, we focus on the expression and potential role of HOX genes in adult tissues. We review evidence that site-specific expression of HOX genes is connected to location-specific disease susceptibility and review studies showing that dysregulated expression of HOX genes can be associated with various diseases. By recognizing the importance of site-specific molecular mechanisms in the organ stroma, we gain new insights into the processes underlying the site-specific manifestation of disease.


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1449-1466 ◽  
Author(s):  
C.E. Nelson ◽  
B.A. Morgan ◽  
A.C. Burke ◽  
E. Laufer ◽  
E. DiMambro ◽  
...  

The vertebrate Hox genes have been shown to be important for patterning the primary and secondary axes of the developing vertebrate embryo. The function of these genes along the primary axis of the embryo has been generally interpreted in the context of positional specification and homeotic transformation of axial structures. The way in which these genes are expressed and function during the development of the secondary axes, particularly the limb, is less clear. In order to provide a reference for understanding the role of the Hox genes in limb patterning, we isolated clones of 23 Hox genes expressed during limb development, characterized their expression patterns and analyzed their regulation by the signalling centers which pattern the limb. The expression patterns of the Abd-B-related Hoxa and Hoxd genes have previously been partially characterized; however, our study reveals that these genes are expressed in patterns more dynamic and complex than generally appreciated, only transiently approximating simple, concentric, nested domains. Detailed analysis of these patterns suggests that the expression of each of the Hoxa and Hoxd genes is regulated in up to three independent phases. Each of these phases appears to be associated with the specification and patterning of one of the proximodistal segments of the limb (upper arm, lower arm and hand). Interestingly, in the last of these phases, the expression of the Hoxd genes violates the general rule of spatial and temporal colinearity of Hox gene expression with gene order along the chromosome. In contrast to the Abd-B-related Hoxa and Hoxd genes, which are expressed in both the fore and hind limbs, different sets of Hoxc genes are expressed in the two limbs. There is a correlation between the relative position of these genes along the chromosome and the axial level of the limb bud in which they are expressed. The more 3′ genes are expressed in the fore limb bud while the 5′ genes are expressed in the hind limb bud; intermediate genes are transcribed in both limbs. However, there is no clear correlation between the relative position of the genes along the chromosome and their expression domains within the limb. With the exception of Hoxc-11, which is transcribed in a posterior portion of the hind limb, Hoxc gene expression is restricted to the anterior/proximal portion of the limb bud. Importantly, comparison of the distributions of Hoxc-6 RNA and protein products reveals posttranscriptional regulation of this gene, suggesting that caution must be exercised in interpreting the functional significance of the RNA distribution of any of the vertebrate Hox genes. To understand the genesis of the complex patterns of Hox gene expression in the limb bud, we examined the propagation of Hox gene expression relative to cell proliferation. We find that shifts in Hox gene expression cannot be attributed to passive expansion due to cell proliferation. Rather, phase-specific Hox gene expression patterns appear to result from a context-dependent response of the limb mesoderm to Sonic hedgehog. Sonic hedgehog (the patterning signal from the Zone of Polarizing Activity) is known to be able to activate Hoxd gene expression in the limb. Although we find that Sonic hedgehog is capable of initiating and polarizing Hoxd gene expression during both of the latter two phases of Hox gene expression, the specific patterns induced are not determined by the signal, but depend upon the temporal context of the mesoderm receiving the signal. Misexpression of Sonic hedgehog also reveals that Hoxb-9, which is normally excluded from the posterior mesenchyme of the leg, is negatively regulated by Sonic hedgehog and that Hoxc-11, which is expressed in the posterior portion of the leg, is not affected by Sonic hedgehog and hence is not required to pattern the skeletal elements of the lower leg.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3921-3921
Author(s):  
Katerina Rejlova ◽  
Alena Musilova ◽  
Martina Slamova ◽  
Karel Fiser ◽  
Karolina Skvarova Kramarzova ◽  
...  

Abstract Homeobox genes (HOX) encode transcription factors that are frequently deregulated in leukemias. Our previous results showed that HOX gene expression differs among genetically characterized subtypes of pediatric acute myeloid leukemia (AML). Specifically, PML-RARa positive AML patients have overall lowest HOX gene expression which positively correlates with expression of histone 3 lysine 27 (H3K27) demethylases - JMJD3 and UTX and negatively with the expression of DNA methyltransferases - DNMT3a and DNMT3b. Interestingly, JMJD3 was already shown to be a direct target of PML-RARa protein (Martens, JH et al, 2010, Cancer Cell). From these findings we postulated a hypothesis that reduced levels of HOX genes in PML-RARa positive AML are a consequence of suppressed expression of histone demethylases resulting in increased H3K27 methylation and/or of elevated levels of DNMTs leading to de novoDNA methylation. We studied the role of histone demethylases and DNMTs in the regulation of HOX gene expression and the effect of treatment in PML-RARa positive cell lines (NB4 and ATRA-resistant clones NB4-LR2 and NB4-MR2). We treated NB4 cell line by all-trans retinoic acid (ATRA; 1uM), which was described to release the differentiation block caused by the presence of PML-RARa and to degrade the fusion protein. We observed that expression of particular HOX genes (HOXA1, HOXA3, HOXA4, HOXA5, HOXA7, HOXB4, HOXB6) measured by qPCR was significantly increased after ATRA treatment. While the level of JMJD3 was significantly increased upon ATRA treatment as well, the expression of UTX did not change. Furthermore, we detected significantly reduced expression of DNMT3b gene. To exclude a non-specific effect of ATRA, independent of PML-RARa, we used resistant clones LR2 and MR2 bearing mutations in retinoic acid-binding domain. HOX gene expression together with JMJD3, UTX and DNMT3b expression did not change upon ATRA treatment. These results confirm the PML-RARa-dependent regulation of HOX genes. To test the role of JMJD3 in the HOX gene expression regulation, we cultured NB4 cells with a specific inhibitor of histone demethylases, GSK-J4 (1 uM, 10 uM), in the presence of ATRA. The co-treatment caused significant decrease in the expression of studied HOX genes (HOXA1, HOXA3, HOXA5, HOXA7, HOXA10, HOXB4, HOXB6) in comparison to ATRA alone which supports the role of JMJD3 in the transcription regulation. Further, we performed chromatin immunoprecipitation (ChIP) to investigate if the changes of HOX gene expression upon ATRA and GSK-J4 treatment would correspond with changes of histone code on HOX gene promoter regions. ATRA treatment caused reduction of repressive histone mark (H3K27me3) on particular HOX gene promoters (HOXA1, HOXA3, HOXA5, HOXA7), by contrast, combinational treatment of ATRA and GSK-J4 reversed this effect. Accordingly, we detected that ATRA/GSK-J4 co-treatment reduced active histone mark H3K4me2. Next we were interested if JMJD3 inhibition would interfere with the differentiation effect of ATRA. As shown previously, ATRA treatment alone caused differentiation of NB4 cell line whereas the combination with GSK-J4 did not reduce the effect. Interestingly, in addition to differentiation it led cells to apoptosis. Combination of drugs (ATRA - 1uM, GSK-J4 - 1, 2, 5uM) increased significantly the percentage of dead cells in comparison to ATRA or GSK treatment alone (GSK-J4 alone vs in combination with ATRA, 1uM - 1.8 fold, 2uM - 2.2 fold, 5 uM - 2.3 fold increase). Next we measured apoptosis in resistant clones LR2 and MR2. In both cases the highest concentration used of GSK-J4 (5uM) in combination with ATRA caused significant increase of dead cells as well (LR2 - 2.1 fold, MR2 - 2.0 fold increase). Our results indicate that JMJD3 is responsible for the regulation of HOX gene expression in PML-RARa positive leukemia since changes of HOX gene expression correspond with histone modifications on the regions of HOX gene promoters. We assume that DNA methylation driven by DNMT3b can also participate in this process. Moreover, our findings demonstrate potential therapeutic implications of GSK-J4 inhibitor in combination with ATRA in patients with acute promyelocytic leukemia who are not responsive to ATRA monotherapy. Supported by P304/12/2214 and GAUK 196616 Disclosures No relevant conflicts of interest to declare.


Development ◽  
1999 ◽  
Vol 126 (1) ◽  
pp. 37-49 ◽  
Author(s):  
J.N. Maloof ◽  
J. Whangbo ◽  
J.M. Harris ◽  
G.D. Jongeward ◽  
C. Kenyon

The specification of body pattern along the anteroposterior (A/P) body axis is achieved largely by the actions of conserved clusters of Hox genes. Limiting expression of these genes to localized regional domains and controlling the precise patterns of expression within those domains is critically important for normal patterning. Here we report that egl-20, a C. elegans gene required to activate expression of the Hox gene mab-5 in the migratory neuroblast QL, encodes a member of the Wnt family of secreted glycoproteins. We have found that a second Wnt pathway gene, bar-1, which encodes a beta-catenin/Armadillo-like protein, is also required for activation of mab-5 expression in QL. In addition, we describe the gene pry-1, which is required to limit expression of the Hox genes lin-39, mab-5 and egl-5 to their correct local domains. We find that egl-20, pry-1 and bar-1 all function in a linear genetic pathway with conserved Wnt signaling components, suggesting that a conserved Wnt pathway activates expression of mab-5 in the migratory neuroblast QL. Moreover, we find that members of this Wnt signaling system play a major role in both the general and fine-scale control of Hox gene expression in other cell types along the A/P axis.


Development ◽  
2000 ◽  
Vol 127 (1) ◽  
pp. 177-186 ◽  
Author(s):  
C. Irving ◽  
I. Mason

Current evidence suggests that the anterior segment of the vertebrate hindbrain, rhombomere 1, gives rise to the entire cerebellum. It is situated where two distinct developmental patterning mechanisms converge: graded signalling from an organising centre (the isthmus) located at the midbrain/hindbrain boundary confronts segmentation of the hindbrain. The unique developmental fate of rhombomere 1 is reflected by it being the only hindbrain segment in which no Hox genes are expressed. In this study we show that ectopic FGF8 protein, a candidate for the isthmic organising activity, is able to induce and repress gene expression within the hindbrain in a manner appropriate to rhombomere 1. Using a heterotopic, heterospecific grafting strategy we demonstrate that rhombomere 1 is able to express Hox genes but that both isthmic tissue and FGF8 inhibit their expression. Inhibition of FGF8 function in vivo shows that it is responsible for defining the anterior limit of Hox gene expression within the developing brain and thereby specifies the extent of the rl territory. Previous studies have suggested that a retinoid morphogen gradient determines the axial limit of expression of individual Hox genes within the hindbrain. We propose a model whereby activation by retinoids is antagonised by inhibition by FGF8 in the anterior hindbrain to set aside the territory from which the cerebellum will develop.


2020 ◽  
Vol 7 (5) ◽  
pp. 881-896 ◽  
Author(s):  
Dongxu He ◽  
Aiqin Mao ◽  
Chang-Bo Zheng ◽  
Hao Kan ◽  
Ka Zhang ◽  
...  

Abstract The aorta, with ascending, arch, thoracic and abdominal segments, responds to the heartbeat, senses metabolites and distributes blood to all parts of the body. However, the heterogeneity across aortic segments and how metabolic pathologies change it are not known. Here, a total of 216 612 individual cells from the ascending aorta, aortic arch, and thoracic and abdominal segments of mouse aortas under normal conditions or with high blood glucose levels, high dietary salt, or high fat intake were profiled using single-cell RNA sequencing. We generated a compendium of 10 distinct cell types, mainly endothelial (EC), smooth muscle (SMC), stromal and immune cells. The distributions of the different cells and their intercommunication were influenced by the hemodynamic microenvironment across anatomical segments, and the spatial heterogeneity of ECs and SMCs may contribute to differential vascular dilation and constriction that were measured by wire myography. Importantly, the composition of aortic cells, their gene expression profiles and their regulatory intercellular networks broadly changed in response to high fat/salt/glucose conditions. Notably, the abdominal aorta showed the most dramatic changes in cellular composition, particularly involving ECs, fibroblasts and myeloid cells with cardiovascular risk factor-related regulons and gene expression networks. Our study elucidates the nature and range of aortic cell diversity, with implications for the treatment of metabolic pathologies.


Sign in / Sign up

Export Citation Format

Share Document