scholarly journals Root-Knot Nematodes a Major Peril to Protected Cultivation System in India: Current Status and its Management

2021 ◽  
Author(s):  
Jaydeep A. Patil ◽  
Saroj Yadav

Growing of vegetable crops under protected conditions are relatively, an innovative technology and most popular among farmers throughout the country. In last few decades protected cultivation has shown potential enhancement in horticultural production. The southern root-knot nematode, Meloidogyne incognita, is an emerging nematode under protected conditions. This nematode can cause chlorosis, stunting and reduce yields associated with the induction of many root galls on host plants. Root-knot nematode severely affect the plant root system by inducing specialized feeding cells i.e., giant cells in the vascular tissues. Recently, this nematode has been considered as a worldwide menace for combat root-knot nematodes, integrated nematode management strategies such as soil solarization, biological control, organic amendment, crop rotation, field sanitation, and fumigants have been developed and successfully used in the past. Here, in this book chapter discussed on biology and life cycle, control measures and proposed future strategies to improve Megalaima incognita management under protected conditions.


2021 ◽  
Vol 17 (2) ◽  
pp. 600-603
Author(s):  
Vinod Kumar ◽  
S. S. Mann ◽  
Anil Kumar

Root-knot nematode, Meloidogyne incognita is an economically important plant-parasitic nematode of vegetable crops grown under open as well as protected cultivation. Use of resistant cultivar is an important measure for managing root-knot nematode as compared to the other management strategies. Despite the potential importance of this nematode, sources of resistance to M. incognita are not yet available for breeding purposes. Present studies were conducted to evaluate the resistant reaction of crop genotype (cucumber japanes long green, tomato shu, cherry tomato P. cherry tomato-1, bitter gourd pusa aushadhi and capsicum yalo wonder) against M. incognita under polyhouse conditions (2018-20). Sixty days after sowing, observations were recorded on number of galls/plant and final nematode population. All the crop genotypes of vegetables were showed varying degree of response against M. incognita. Out of five crop genotypes of vegetables, four (cucumber japanes long green, tomato shu, cherry tomato P. cherry tomato-1 and bitter gourd Pusa aushadhi) were susceptible/highly susceptible while capsicum yalo wonder showed moderately resistant reaction against M. incognita in both the years (2018-2020) and this genotype can be used as a source of resistance.



Nematology ◽  
2021 ◽  
pp. 1-8
Author(s):  
Fabíola de J. Silva ◽  
Regina C.F. Ribeiro ◽  
Adelica A. Xavier ◽  
Vanessa A. Gomes ◽  
Paulo V.M. Pacheco ◽  
...  

Summary Root-knot nematodes (Meloidogyne spp.) are responsible for various significant crop losses, which require taking integrated control measures. The present study aimed to identify a possible sustainable approach to the management of Meloidogyne javanica in vegetable crops using an organic compound based on pequi (Caryocar brasiliense) fruit residues. A pot experiment was conducted using cultivars of tomato and lettuce susceptible to M. javanica, with three amendments including inorganic fertiliser, cattle manure and five doses of organic compost with pequi residues. All treatments were inoculated with second-stage juveniles of M. javanica to simulate the root-knot nematode disease in field conditions. Increasing doses of organic compost with pequi residues from 5 kg m−3 to 30 kg m−3 promoted a significant decrease in the nematode population in both cultures evaluated. Organic compost (30 kg m−3) reduced the numbers of galls and eggs of M. javanica by 41.6 and 46.5% in tomato roots, and by 80.3 and 59.2% in lettuce roots, respectively, compared with non-treated control. Organic compost also increased crop development considerably. In general, there was a 43.0% increase in plant development compared to non-treated control. Hence, organic compost of pequi residues could be an alternative to toxic chemical nematicides and recommended as eco-friendly management of M. javanica in vegetable crops.



Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 534-540 ◽  
Author(s):  
Jill Schroeder ◽  
Michael J. Kenney ◽  
Stephen H. Thomas ◽  
Leigh Murray

Greenhouse experiments showed that yellow nutsedge shoot number and shoot and root dry weights were reduced by root-knot nematodes and chile peppers. Root-knot nematodes increased and chile peppers decreased the number of yellow nutsedge tubers. Yellow nutsedge tuber germination was reduced by chile peppers but not by root-knot nematodes. Yellow nutsedge established from root-knot nematode-infected tubers produced more tubers than noninfected tubers. Root-knot nematode populations became established on yellow nutsedge root systems when plants were established from tubers previously cultured with root-knot nematodes. Metolachlor stunted chile peppers, eliminated yellow nutsedge, and influenced root-knot nematode populations through reduction of host plant root mass. However, when root-knot nematodes were present, yellow nutsedge tuber germination was not affected by metolachlor. This research indicates that the pests do not exist independently and that their management may be interrelated.



1999 ◽  
Vol 89 (12) ◽  
pp. 1138-1143 ◽  
Author(s):  
Yuji Oka ◽  
Yigal Cohen ◽  
Yitzhak Spiegel

Chemical inducers of pathogenesis-related proteins and plant resistance were applied to tomato plants, with the aim of inducing resistance to the root-knot nematode Meloidogyne javanica. Relative to control plants, foliar spray and soil-drenching with dl-β-amino-n-butyric acid (BABA) reduced root-galling 7 days after inoculation, as well as the number of eggs 30 days after inoculation. Other chemicals (α- and γ-amino-n-butyric acid, jasmonic acid, methyl jasmonate, and salicylic acid) were either phytotoxic to tomato plants or did not improve control of root-knot nematodes. Fewer second-stage juveniles invaded BABA-treated tomato roots, and root-galling indices were lower than in control tomato plants. Resistance phenomena in seedlings lasted at least 5 days after spraying with BABA. Nematodes invading the roots of BABA-treated seedlings induced small, vacuolate giant cells. Postinfection treatment of tomato plants with BABA inhibited nematode development. It is speculated that after BABA application tomato roots become less attractive to root-knot nematodes, physically harder to invade, or some substance(s) inhibiting nematode or nematode feeding-site development is produced in roots.



2021 ◽  
Author(s):  
Radwa G. Mostafa ◽  
Aida M. El-Zawahry ◽  
Ashraf E. M. Khalil ◽  
Ameer E. Elfarash ◽  
Ali D. A. Allam

Abstract Background Plant-parasitic nematodes are extremely dangerous pests in a variety of economically important crops. The purpose of this study was a survey of all nematode species existing in banana from three sites in Assiut Governorate, Egypt and to characterize the most common species by morphological, morphometric and molecular techniques (PCR with species-specific primers). Then, study of resistance or sensitivity of some banana cultivars to root-knot nematodes.Methods and Results Four nematodes, Meloidogyne, Rotylenchulus reniformis, Helicotylenchus and Pratylenchus were isolated and identified from soil and root samples collected from banana plants. Most frequently occurring of plant parasitic nematode species in banana was Meloidogyne. Former research found differences in species and in resistance to root-knot nematodes among the examined plant cultivars. Identification of Root-knot nematodes by Characterize of morphometric, molecularly, morphological isolate of Meloidogyne related to banana plants. The results revealed that the identified nematode species, Meloidogyne javanica, is the most common plant-parasitic nematodes in all locations. Data on the susceptibility of the tested banana cultivars to M. javanica revealed that Grand Naine was highly susceptible (HS) however, Magraby was susceptible (S) but Williams and Hindi cultivars were moderately resistant (MR).Conclusions we concluded that a survey revealed the significant prevalence of Meloidogyne javanica, the most important nematodes on banana in Assiut. The morphometric, morphological, and molecular identification were harmonic with one another. In addition to the host response of certain banana cultivars, to M. javanica that resistance is of significance and can be helpful to incorporate through planning control measures for root- knot nematodes.



2016 ◽  
Vol 8 (2) ◽  
pp. 719-723
Author(s):  
B.C. Kabdwal ◽  
Rashmi Tewari ◽  
Roopali Sharma ◽  
J. Kumar

Tomato is one of the most widely grown temperate vegetable crops grown in Himalayas and Tarai region of Northern India. Being the high value crop is important in raising the income of the farmers. However, from past few years, they are facing the problem of numerous diseases in the crop and subsequent yield losses and thusaffecting the economic status of the growers. Present study was carried out with the objective to discern the current status of disease occurrence in tomato and management strategies followed by the growers of Golapar area of District Nainital, a major tomato growing area of Uttarakhand state. Purposive sampling was followed for selection of the area and respondents were selected randomly. Data was collected through structured questionnaire. It was found that tomato is the key vegetable in the area and preference of the varieties was largely based on the marketable yield, larger fruit size, higher market price and also depends on the availability of seed with the local distributer. Average loss ranges from 20-80% due to late blight, leaf curl, early blight, wilt and stem rot diseases. Application of pesticides was exceedingly high as number of pesticide sprays was varied in the range of 10-40. However, disease management varied from 5-60% depending on the chemical application by the farmers. This study will be supportive to manipulate adopted strategies to reduce the losses and low cost proven technologies can be introduced for disease management for the benefit of the farmers.



2019 ◽  
Vol 109 (2) ◽  
pp. 175-186 ◽  
Author(s):  
M. Saponari ◽  
A. Giampetruzzi ◽  
G. Loconsole ◽  
D. Boscia ◽  
P. Saldarelli

A dramatic outbreak of Xylella fastidiosa decimating olive was discovered in 2013 in Apulia, Southern Italy. This pathogen is a quarantine bacterium in the European Union (EU) and created unprecedented turmoil for the local economy and posed critical challenges for its management. With the new emerging threat to susceptible crops in the EU, efforts were devoted to gain basic knowledge on the pathogen biology, host, and environmental interactions (e.g., bacterial strain(s) and pathogenicity, hosts, vector(s), and fundamental drivers of its epidemics) in order to find means to control or mitigate the impacts of the infections. Field surveys, greenhouse tests, and laboratory analyses proved that a single bacterial introduction occurred in the area, with a single genotype, belonging to the subspecies pauca, associated with the epidemic. Infections caused by isolates of this genotype turned to be extremely aggressive on the local olive cultivars, causing a new disease termed olive quick decline syndrome. Due to the initial extension of the foci and the rapid spread of the infections, eradication measures (i.e., pathogen elimination from the area) were soon replaced by containment measures including intense border surveys of the contaminated area, removal of infected trees, and mandatory vector control. However, implementation of containment measures encountered serious difficulties, including public reluctance to accept control measures, poor stakeholder cooperation, misinformation from some media outlets, and lack of robust responses by some governmental authorities. This scenario delayed and limited containment efforts and allowed the bacterium to continue its rapid dissemination over more areas in the region, as shown by the continuous expansion of the official borders of the infected area. At the research level, the European Commission and regional authorities are now supporting several programs aimed to find effective methods to mitigate and contain the impact of X. fastidiosa on olives, the predominant host affected in this epidemic. Preliminary evidence of the presence of resistance in some olive cultivars represents a promising approach currently under investigation for long-term management strategies. The present review describes the current status of the epidemic and major research achievements since 2013.



2013 ◽  
Vol 10 (12) ◽  
pp. 15409-15432 ◽  
Author(s):  
T. Zhang ◽  
W. H. Zeng ◽  
S. R. Wang ◽  
Z. K. Ni

Abstract. Temporal and spatial changes to the water quality of Dianchi Lake in Southwest China were investigated using monthly monitoring data from 2005 to 2012. Based on the analysis of total phosphorus (TP), total nitrogen (TN), and chlorophyll a (Chl a) concentrations, it was determined that, in Caohai Lake, the annual concentrations of these variables ranged from 0.19–1.46, 6.11–16.79, 0.06–0.14 mg L−1, respectively. In addition, the annual concentrations of TP, TN and Chl a in Waihai Lake ranged between 0.13–0.20, 1.82–3.01, 0.04–0.09 mg L−1, respectively. Cluster Analysis (CA) classified the 10 monitoring sites into two groups (group A and group B) based on similarities of water quality characteristics. Our data revealed that the current status of water quality within Caohai Lake was much worse than that of Waihai Lake. Water quality was seriously degraded during the economic boom near the period of the "Eleventh Five-Year Plan" (2005–2010), and gradually improved from 2010 to 2012 because of the "standard emission directive to industry". The main factors that influenced the spatial and temporal changes to water quality were natural factors including lake evolution and regional characteristic as well as human factors such as pollution load into the lake and management strategies that were already adopted. Some activities and regulations were implemented to enhance the lake environment by controlling wastewater emissions and establishing regulations to protect the lakes in the Yunnan Province. However, problems with institutional fragmentation (horizontal and vertical), simple treatment methods, low-intensity investment in pollution control, and lack of meaningful endogenous pollution control strategies were still present in the lake management strategy. To solve these problems, suitable control measures are needed, especially considering the current old-age status of Dianchi Lake. The fundamental improvement of the water quality within Caohai Lake was dependent on the measures taken in the upper reaches of the Caohai Watershed, including further recovery of submerged plants, resource utilization by floating plants and the reinforcement of sediment disposal. Management strategies for endogenous pollution in Waihai Lake were mainly dependent on restocking algae-eating fish and the ecological restoration of macrophytes. In this way, the swamping trend and the ageing process that is occurring in Dianchi Lake can be stunted.



2015 ◽  
Vol 4 (2) ◽  
pp. 87-92 ◽  
Author(s):  
Gamini Sahu ◽  
Surendra K. Gautam ◽  
Aditi N. Poddar

Root knot nematodes (Meloidogyne species) are major pests of vegetable crops causing serious losses in quantity and quality of crop yield. This study involves an assessment of their suitable hosts on the basis of variations in their population densities and body sizes in different vegetable crop plants under field conditions. A random survey of root knot nematode infestation in vegetable crops was conducted in 9 villages of Abhanpur block, Chhattisgarh state, Central India, from January 2012 to March 2012.  Diseased plants were identified on the basis of above ground symptoms and soil and root samples collected by digging. Extraction of nematodes was done by Cobb’s sieving and decantation method and Baerman’s funnel technique. Identification was done microscopically by morphological examination of perineal patterns of female nematodes. Body sizes were measured by using an eyepiece/ocular micrometer. Twenty nine percent of the total farm area surveyed suffered from root knot nematode attack. Among the several genera of vegetable crop plants surveyed, Lycopersicon esculentum, Dolichos lablab, Solanum melongena, Momordica charantia, Daucus carota,Capsicum annum,Cucumis sativus had root galls. Three species of root knot nematodes Meloidogyne incognita, M. javanica, M. areneria were identified from the above hosts and a comparative morphometric analysis of the body, head and neck size ratios of females were done. Non-significant body and head size variations existing between the females from D. lablab, S. melongena, C. annum, D. carota, L. esculentum showed that all the crops are equally susceptible to root knot nematode attack.  However, on the basis of nematode population density, D. carrota appears to be the best suitable host of the Meloidogyne species other than L. esculentum and S. melongena.



EDIS ◽  
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Mengyi Gu ◽  
Johan Desaeger

Florida leads the commercial production of caladiums, a popular ornamental. In Florida, root-knot, sting, and stubby root nematodes are found in caladium fields. Root-knot nematodes are considered the most important of all pests in caladiums that are grown in sand. This publication will help caladium growers understand what plant-parasitic nematodes are and current nematode management strategies for the caladium industry.



Sign in / Sign up

Export Citation Format

Share Document