scholarly journals Stochastic Versus Ray Tracing Wireless Channel Modeling for 5G and V2X Applications: Opportunities and Challenges

2021 ◽  
Author(s):  
Sulaiman Tariq ◽  
Hussain Al-Rizzo ◽  
Md Nazmul Hasan ◽  
Nijas Kunju ◽  
Said Abushamleh

Due to the rapid development of wireless communication applications, the study of Multiple Input Multiple Output (MIMO) communication systems has gained comprehensive research activities since it can significantly increase the channel capacity and link reliability without sacrificing bandwidth and/or transmitted power levels. Researchers tend to evaluate the performance of their MIMO antenna arrays using various channel modeling tools. These channel models are mainly categorized into either deterministic channels based on Ray Tracing (RT) tools or Stochastic Channel Models (SCM). In this chapter, we compare these two categories in terms of the MIMO channel capacity using a complete description of the antennas at the transmitting and receiving ends in terms of 3D polarimetric radiation patterns and scattering parameters. The performance is evaluated for 5G New Radio (NR) Enhanced Mobile Broadband (eMBB) and Ultra-Reliable Low-Latency Communication (URLLC) services and Vehicle-to-Everything (V2X) systems using state-of-the-art commercial SCM and RT tools to provide information regarding the capabilities and limitations of each approach under different channel environments and the Quality of Experience (QoE) for high data rate and low latency content delivery in the 5G NR sub-6GHz mid-band Frequency Range-1 (FR1) N77/N78 bands.

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Jianwen Ding ◽  
Lei Zhang ◽  
Jingya Yang ◽  
Bin Sun ◽  
Jiying Huang

The rapid development of high-speed railway (HSR) and train-ground communications with high reliability, safety, and capacity promotes the evolution of railway dedicated mobile communication systems from Global System for Mobile Communications-Railway (GSM-R) to Long Term Evolution-Railway (LTE-R). The main challenges for LTE-R network planning are the rapidly time-varying channel and high mobility, because HSR lines consist of a variety of complex terrains, especially the composite scenarios where tunnels, cuttings, and viaducts are connected together within a short distance. Existing researches mainly focus on the path loss and delay spread for the individual HSR scenarios. In this paper, the broadband measurements are performed using a channel sounder at 950 MHz and 2150 MHz in a typical HSR composite scenario. Based on the measurements, the pivotal characteristics are analyzed for path loss exponent, power delay profile, and tap delay line model. Then, the deterministic channel model in which the 3D ray-tracing algorithm is applied in the composite scenario is presented and validated by the measurement data. Based on the ray-tracing simulations, statistical analysis of channel characteristics in delay and Doppler domain is carried out for the HSR composite scenario. The research results can be useful for radio interface design and optimization of LTE-R system.


2020 ◽  
Author(s):  
Joerg Eisenbeis ◽  
Magnus Tingulstad ◽  
Nicolai Kern ◽  
Zsolt Kollár ◽  
Jerzy Kowalewski ◽  
...  

<div>Hybrid beamforming systems represent an efficient</div><div>architectural solution to realize massive multiple-input multiple-output (MIMO) communication systems in the centimeter wave (cmW) and millimeter wave (mmW) region. These hybrid beamforming systems separate the beamforming process into a digital and analog beamforming network. The analog beamforming networks can be realized by different architectural solutions, which demand dedicated algorithms to determine the complex weighting factors in the digital and analog domain. To date, novel hybrid beamforming architectures and algorithms are solely compared in numerical simulations based on statistical channel models. These abstract channel models simplify the complicated electromagnetic propagation process, thereby not exactly reconstructing the wireless channel. Within this work, we present a measurement-based evaluation of hybrid beamforming algorithms and compare them with numerical results gained from a statistical path-based MIMO channel model. The results show that by adjustment of the channel model parameter the simulation achieves a good match with the measured maximum achievable spectral efficiencies.</div>


2020 ◽  
Author(s):  
Joerg Eisenbeis ◽  
Magnus Tingulstad ◽  
Nicolai Kern ◽  
Zsolt Kollár ◽  
Jerzy Kowalewski ◽  
...  

<div>Hybrid beamforming systems represent an efficient</div><div>architectural solution to realize massive multiple-input multiple-output (MIMO) communication systems in the centimeter wave (cmW) and millimeter wave (mmW) region. These hybrid beamforming systems separate the beamforming process into a digital and analog beamforming network. The analog beamforming networks can be realized by different architectural solutions, which demand dedicated algorithms to determine the complex weighting factors in the digital and analog domain. To date, novel hybrid beamforming architectures and algorithms are solely compared in numerical simulations based on statistical channel models. These abstract channel models simplify the complicated electromagnetic propagation process, thereby not exactly reconstructing the wireless channel. Within this work, we present a measurement-based evaluation of hybrid beamforming algorithms and compare them with numerical results gained from a statistical path-based MIMO channel model. The results show that by adjustment of the channel model parameter the simulation achieves a good match with the measured maximum achievable spectral efficiencies.</div>


Author(s):  
Anatoliy Soltus ◽  
◽  
Maksym Rud ◽  

The article examines the problems of navigation and communication with the use of satellite technologies in road transport in the context of the growth of globalization processes in the world economy and the transformations of freight transport technologies caused by a large-scale transition to transport with zero emissions and the development of unmanned vehicles. The paper discusses the principles of building a global high-speed broadband satellite Internet with low latency. Potential capabilities of technologies such as digital antenna arrays and laser communication channels used in such systems are analyzed. Also considered are the existing and potential problems, both technical with electromagnetic compatibility with existing satellite communication systems and between systems under construction or planning, and legal caused by changes in the principles of information transfer at the interstate level. The main players in the emerging market of high-speed satellite communications are considered and the parameters of the systems declared by them are described. The comparison of the current state of building satellite constellations of individual projects is carried out and the ability to implement the announced plans by individual companies is analyzed. The disadvantages that create obstacles for the introduction of high-speed satellite communications in road transport at the moment and the directions of their overcoming are highlighted. Considering the potential of satellite Internet systems, the current state of construction, as well as existing technical and legal restrictions, the introduction of reliable satellite communications will significantly speed up the transition to autonomous unmanned vehicles. In this regard, the most successful opportunities for the new communication technology will be able to realize the transport companies, which will simultaneously update the fleet of vehicles towards zero emissions and with unmanned technologies.


2019 ◽  
Vol 9 (3) ◽  
pp. 443 ◽  
Author(s):  
Arafat Habib ◽  
Sangman Moh

Over the past few years, the modeling of wireless channels for radio wave propagation over the sea surface has drawn the attention of many researchers. Channel models are designed and implemented for different frequencies and communication scenarios. There are models that emphasize the influence of the height of the evaporation duct in the marine environment, as well as models that deal with different frequencies (2.5, 5, and 10 GHz, etc.) or the impact of various parameters, such as antenna height. Despite the increasing literature on channel modeling for the over-the-sea marine environment, there is no comprehensive study that focuses on key concepts that need to be considered when developing a new channel model, characteristics of channel models, and comparative analysis of existing works along with their possible improvements and future applications. In this paper, channel models are discussed in relation to their operational principles and key features, and they are compared with each other in terms of major characteristics and pros and cons. Some important insights on the design and implementation of a channel model, possible applications and improvements, and challenging issues and research directions are also discussed. The main goal of this paper is to present a comparative study of over-the-sea channel models for radio wave propagation, so that it can help engineers and researchers in this field to choose or design the appropriate channel models based on their applications, classification, features, advantages, and limitations.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Wei Fan ◽  
Pekka Kyösti ◽  
Jesper Ø. Nielsen ◽  
Lassi Hentilä ◽  
Gert F. Pedersen

This paper discusses over the air (OTA) testing for multiple input multiple output (MIMO) capable terminals with emphasis on modeling bidirectional spatial channel models in multiprobe anechoic chamber (MPAC) setups. In the literature, work on this topic has been mainly focused on how to emulate downlink channel models, whereas uplink channel is often modeled as free space line-of-sight channel without fading. Modeling realistic bidirectional (i.e., both uplink and downlink) propagation environments is essential to evaluate any bidirectional communication systems. There have been works stressing the importance of emulating full bidirectional channel and proposing possible directions to implement uplink channels in the literature. Nevertheless, there is no currently published work reporting an experimental validation of such concepts. In this paper, a general framework to emulate bidirectional channels for time division duplexing (TDD) and frequency division duplexing (FDD) communication systems is proposed. The proposed technique works for MPAC setups with arbitrary uplink and downlink probe configurations, that is, possibly different probe configurations (e.g., number of probes or their configurations) in the uplink and downlink. The simulation results are further supported by measurements in a practical MPAC setup. The proposed algorithm is shown to be a valid method to emulate bidirectional spatial channel models.


Sign in / Sign up

Export Citation Format

Share Document