scholarly journals Rapid Physical Models: A New Phase in Industrial Design

Author(s):  
Peer M. Sathikh
Author(s):  
Yu Kimishima ◽  
Hideki Aoyama

Currently industrial design is mainly done by CAD and mock-up is created to evaluate the design. This process is repeated from the rough sketches to the final detailed mock-up until the designer is satisfied. In this process, creating the mock-up, especially detailed mock-up, is quite costly. Hence, there is a need to improve the efficiency of mock-up fabrication. One of the strategies for realizing this is to use virtual models (VM) instead of mock-up. VM is a model which is created on computer by 3D computer graphics, and it allows realistic graphical modeling which can be modified easily, reduces time considerably, and enables dynamic viewing of models from any angle and orientation. Despite this, mock-ups are still required because the process of design evaluation by touching physical models (PM) is still important to designers. To resolve this disadvantage of VM, this paper proposes a new evaluation system for industrial design. With this system, VM and the rapid prototyping mock-up are overlapped in virtual space to produce a tangible VM. This new type of VM functions just like a detailed mock-up but can be created much faster and cheaper. This system employs the concept of Augmented Virtuality (AV), which is mainly based on virtual space and real objects are added to reinforce the virtual space. In this case, haptic information from the rapid prototyping mock-up is added to optical information from the VM. When estimating the 3D position of a real object, optical information is used considerably more than haptic information. Therefore, if there are only a few positional or geometrical differences between the rapid prototyping mock-up and the VM, the differences can be offset by the (incorporated into the) optical information. For this reason, if the designer needs to modify the product shape, only the VM needs to be modified, allowing old mock-ups to be used repeatedly. This means that designers can evaluate a variety of product designs with only one mock-up, thus reducing both time and the costs for creating a mock-up. The operator wears a data glove on his/her hand to construct a virtual hand in the virtual space. With this virtual hand, the operator can also evaluate the user interface (UI) of the product by means of pushing buttons or watching display on the VM. This paper also provides a new method for overlapping the virtual space and real space.


2013 ◽  
Vol 868 ◽  
pp. 3-6 ◽  
Author(s):  
Wen Li Lv ◽  
Jun Li ◽  
Yong Feng Yan ◽  
Shuai Gao

From the 21st century, computers are widely used in various fields, in the mines, driven by digitization, the birth of 3Dmine make digital mine entered a new phase, Lanjiahuoshan and Jianbaobao are very important in Panzhihua mine. Based on 3Dmine’s advantages, combined with the geological conditions of two mines, this paper established the underlying database, surface models, physical models, block model. The study confirms 3Dmine digital applications in the mine and provide the basis for the mine design, measurement, the production and management.


1988 ◽  
Vol 102 ◽  
pp. 129-132
Author(s):  
K.L. Baluja ◽  
K. Butler ◽  
J. Le Bourlot ◽  
C.J. Zeippen

SummaryUsing sophisticated computer programs and elaborate physical models, accurate radiative and collisional atomic data of astrophysical interest have been or are being calculated. The cases treated include radiative transitions between bound states in the 2p4and 2s2p5configurations of many ions in the oxygen isoelectronic sequence, the photoionisation of the ground state of neutral iron, the electron impact excitation of the fine-structure forbidden transitions within the 3p3ground configuration of CℓIII, Ar IV and K V, and the mass-production of radiative data for ions in the oxygen and fluorine isoelectronic sequences, as part of the international Opacity Project.


Author(s):  
T. Schober

Nb, Ta and V are prototype substances for the study of the endothermic reactions of H with metals. Such metal-hydrogen reactions have gained increased importance due to the application of metal-hydrides in hydrogen- und heat storage devices. Electron microscopy and diffraction were demonstrated to be excellent methods in the study of hydride morphologies and structures (1). - Figures 1 and 2 show the NbH and TaH phase diagrams (2,3,4). EM techniques have contributed substantially to the elucidation of the structures and domain configurations of phases β, ζ and ε (1,4). Precision length measurement techniques of distances in reciprocal space (5) recently led to a detailed understanding of the distortions of the unit cells of phases ζ and ε (4). In the same work (4) the existence of the new phase η was shown. It is stable near -68 °C. The sequence of transitions is thus below 70 %.


Author(s):  
Yeshayahu Talmon

To achieve complete microstructural characterization of self-aggregating systems, one needs direct images in addition to quantitative information from non-imaging, e.g., scattering or Theological measurements, techniques. Cryo-TEM enables us to image fluid microstructures at better than one nanometer resolution, with minimal specimen preparation artifacts. Direct images are used to determine the “building blocks” of the fluid microstructure; these are used to build reliable physical models with which quantitative information from techniques such as small-angle x-ray or neutron scattering can be analyzed.To prepare vitrified specimens of microstructured fluids, we have developed the Controlled Environment Vitrification System (CEVS), that enables us to prepare samples under controlled temperature and humidity conditions, thus minimizing microstructural rearrangement due to volatile evaporation or temperature changes. The CEVS may be used to trigger on-the-grid processes to induce formation of new phases, or to study intermediate, transient structures during change of phase (“time-resolved cryo-TEM”). Recently we have developed a new CEVS, where temperature and humidity are controlled by continuous flow of a mixture of humidified and dry air streams.


Author(s):  
Hassan Radwan ◽  
Tarek Abdoun
Keyword(s):  

Author(s):  
V.N. Moraru

The results of our work and a number of foreign studies indicate that the sharp increase in the heat transfer parameters (specific heat flux q and heat transfer coefficient _) at the boiling of nanofluids as compared to the base liquid (water) is due not only and not so much to the increase of the thermal conductivity of the nanofluids, but an intensification of the boiling process caused by a change in the state of the heating surface, its topological and chemical properties (porosity, roughness, wettability). The latter leads to a change in the internal characteristics of the boiling process and the average temperature of the superheated liquid layer. This circumstance makes it possible, on the basis of physical models of the liquids boiling and taking into account the parameters of the surface state (temperature, pressure) and properties of the coolant (the density and heat capacity of the liquid, the specific heat of vaporization and the heat capacity of the vapor), and also the internal characteristics of the boiling of liquids, to calculate the value of specific heat flux q. In this paper, the difference in the mechanisms of heat transfer during the boiling of single-phase (water) and two-phase nanofluids has been studied and a quantitative estimate of the q values for the boiling of the nanofluid is carried out based on the internal characteristics of the boiling process. The satisfactory agreement of the calculated values with the experimental data is a confirmation that the key factor in the growth of the heat transfer intensity at the boiling of nanofluids is indeed a change in the nature and microrelief of the heating surface. Bibl. 20, Fig. 9, Tab. 2.


Author(s):  
Fei HU ◽  
Kun ZHOU ◽  
Hongshi ZHOU

Governments all over the world are paying great attention to economic innovation and the development of design in modern society. They are spending more and more recourses on making rules for Industrial Design Policy and measuring its implementation. As a method to make macroeconomic regulation and control by the government, the effectiveness and importance of design policy has already been widely admitted. In a macro-background of the three turns of Chinese design policy, taking the design policy of Guangdong province as an example, this article will analyze how local/regional government should respond to the national design policy. Based on the investigation and analysis of the winners of the "Guangdong Governor Cup Industrial Design Competition", this paper discusses how industrial design competition as a part of the design policy to support the development of industrial design. After making a comparison with the design policy of the Yangtze River Delta area, this article tries to enhance and perfect the current policy path.


Author(s):  
Silas DENZ ◽  
Wouter EGGINK

Conventional design practices regard gender as a given precondition defined by femininity and masculinity. To shift these strategies to include non-heteronormative or queer users, queer theory served as a source of inspiration as well as user sensitive design techniques. As a result, a co-design workshop was developed and executed. Participants supported claims that gender scripts in designed artefacts uphold gender norms. The practice did not specify a definition of a queer design style. However, the co-design practice opened up the design process to non-normative gender scripts by unmasking binary gender dichotomies in industrial design.


This article describes the proposed approaches to creating distributed models that can, with given accuracy under given restrictions, replace classical physical models for construction objects. The ability to implement the proposed approaches is a consequence of the cyber-physical integration of building systems. The principles of forming the data structure of designed objects and distributed models, which make it possible to uniquely identify the elements and increase the level of detail of such a model, are presented. The data structure diagram of distributed modeling includes, among other things, the level of formation and transmission of signals about physical processes inside cyber-physical building systems. An enlarged algorithm for creating the structure of the distributed model which describes the process of developing a data structure, formalizing requirements for the parameters of a design object and its operating modes (including normal operating conditions and extreme conditions, including natural disasters) and selecting objects for a complete group that provides distributed modeling is presented. The article formulates the main approaches to the implementation of an important practical application of the cyber-physical integration of building systems - the possibility of forming distributed physical models of designed construction objects and the directions of further research are outlined.


Sign in / Sign up

Export Citation Format

Share Document