scholarly journals Toxicosis of Snake, Scorpion, Honeybee, Spider, and Wasp Venoms: Part 2

2021 ◽  
Author(s):  
Saganuwan Alhaji Saganuwan

Toxicosis is a poisoning caused by venomous animals such as snake, scorpion, honeybee, spider and wasp. Their poisons contain amino acids, peptides, proteins, enzymes and metallic ions that are responsible for neurotoxicity, hemotoxicity and myotoxicity. Because of in vivo therapeutic challenges posed by toxicosis, there is need for ideal therapeutic agents against envenomation caused by venomous animals. Findings have shown that toxicosis could be treated symptomatically. Snake and scorpion antivenins could be used for treatment of poisoning caused by snake, scorpion, honeybee, spider and wasp. The amount of antivenin is dependent on the quantity of venom injected into the affected individuals. Moreso, sympotomatic treatments are also done according to the systems affected. Hospitalization is necessary for assessment of therapeutic success.


2021 ◽  
Author(s):  
Saganuwan Alhaji Saganuwan

Toxicosis is a poisoning caused by venomous animals such as snake, scorpion, honeybee, spider, and wasp. Their poisons contain amino acids, peptides, proteins, enzymes, and metallic ions that are responsible for neurotoxicity, hemotoxicity, and myotoxicity. Because of in vivo therapeutic challenges posed by toxicosis, there is need for ideal therapeutic agents against envenomation caused by venomous animals. Findings have shown that toxicosis could be treated symptomatically. Snake and scorpion antivenins could be used for treatment of poisoning caused by snake, scorpion, honeybee, spider, and wasp. The amount of antivenin is dependent on the quantity of venom injected into the affected individuals. More so, symptomatic treatments are also done according to the systems affected. Hospitalization is necessary for assessment of therapeutic success.



2020 ◽  
Vol 26 (36) ◽  
pp. 4675-4684 ◽  
Author(s):  
Shabierjiang Jiapaer ◽  
Takuya Furuta ◽  
Yu Dong ◽  
Tomohiro Kitabayashi ◽  
Hemragul Sabit ◽  
...  

Background: Glioblastomas (GBMs) are aggressive malignant brain tumors. Although chemotherapy with temozolomide (TMZ) can extend patient survival, most patients eventually demonstrate resistance. Therefore, novel therapeutic agents that overcome TMZ chemoresistance are required to improve patient outcomes. Purpose: Drug screening is an efficient method to find new therapeutic agents from existing drugs. In this study, we explored a novel anti-glioma agent by drug screening and analyzed its function with respect to GBM treatment for future clinical applications. Methods: Drug libraries containing 1,301 diverse chemical compounds were screened against two glioma stem cell (GSC) lines for drug candidate selection. The effect of selected agents on GSCs and glioma was estimated through viability, proliferation, sphere formation, and invasion assays. Combination therapy was performed to assess its ability to enhance TMZ cytotoxicity against GBM. To clarify the mechanism of action, we performed methylation-specific polymerase chain reaction, gelatin zymography, and western blot analysis. Results: The acyl-CoA synthetase inhibitor 2-fluoropalmitic acid (2-FPA) was selected as a candidate anti-glioma agent. 2-FPA suppressed the viability and stem-like phenotype of GSCs. It also inhibited proliferation and invasion of glioma cell lines. Combination therapy of 2-FPA with TMZ synergistically enhanced the efficacy of TMZ. 2-FPA suppressed the expression of phosphor-ERK, CD133, and SOX-2; reduced MMP-2 activity; and increased methylation of the MGMT promoter. Conclusion: 2-FPA was identified as a potential therapeutic agent against GBM. To extend these findings, physiological studies are required to examine the efficacy of 2-FPA against GBM in vivo.



2020 ◽  
Vol 24 (21) ◽  
pp. 2508-2523
Author(s):  
Johana Gómez ◽  
Diego Sierra ◽  
Constanza Cárdenas ◽  
Fanny Guzmán

One area of organometallic chemistry that has attracted great interest in recent years is the syntheses, characterization and study of organometallic complexes conjugated to biomolecules with different steric and electronic properties as potential therapeutic agents against cancer and malaria, as antibiotics and as radiopharmaceuticals. This minireview focuses on the unique structural diversity that has recently been discovered in α- amino acids and the reactions of metallocene complexes with peptides having different chemical behavior and potential medical applications. Replacing α-amino acids with metallocene fragments is an effective way of selectively influencing the physicochemical, structural, electrochemical and biological properties of the peptides. Consequently, research in the field of bioorganometallic chemistry offers the opportunity to develop bioactive metal compounds as an innovative and promising approach in the search for pharmacological control of different diseases.



1995 ◽  
Vol 60 (12) ◽  
pp. 2170-2177 ◽  
Author(s):  
Zdenko Procházka ◽  
Jiřina Slaninová
Keyword(s):  

Solid phase technique on p-methylbenzhydrylamine resin was used for the synthesis of four analogs of oxytocin and four analogs of vasopressin with the non-coded amino acids L- or D- and 1- or 2-naphthylalanine and D-homoarginine. [L-1-Nal2]oxytocin, [D-1-Nal2]oxytocin, [L-2-Nal2]oxytocin, [D-2-Nal2]oxytocin, [L-1-Nal2, D-Har8]vasopressin, [D-1-Nal2, D-Har8]vasopressin, [L-2-Nal2, D-Har8]vasopressin and [D-2-Nal2, D-Har8]vasopressin were synthesized. All eight analogs were found to be uterotonic inhibitors in vitro and in vivo. Analogs with 2-naphthylalanine are stronger inhibitors, particularly in the vasopressin series than the analogs with 1-naphthylalanine. Analogs with 1-naphthylalanine have no activity in the pressor test, analogs with 2-naphthylalanine are weak pressor inhibitors.



Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 481
Author(s):  
Gemma G. Martínez-García ◽  
Raúl F. Pérez ◽  
Álvaro F. Fernández ◽  
Sylvere Durand ◽  
Guido Kroemer ◽  
...  

Autophagy is an essential protective mechanism that allows mammalian cells to cope with a variety of stressors and contributes to maintaining cellular and tissue homeostasis. Due to these crucial roles and also to the fact that autophagy malfunction has been described in a wide range of pathologies, an increasing number of in vivo studies involving animal models targeting autophagy genes have been developed. In mammals, total autophagy inactivation is lethal, and constitutive knockout models lacking effectors of this route are not viable, which has hindered so far the analysis of the consequences of a systemic autophagy decline. Here, we take advantage of atg4b−/− mice, an autophagy-deficient model with only partial disruption of the process, to assess the effects of systemic reduction of autophagy on the metabolome. We describe for the first time the metabolic footprint of systemic autophagy decline, showing that impaired autophagy results in highly tissue-dependent alterations that are more accentuated in the skeletal muscle and plasma. These changes, which include changes in the levels of amino-acids, lipids, or nucleosides, sometimes resemble those that are frequently described in conditions like aging, obesity, or cardiac damage. We also discuss different hypotheses on how impaired autophagy may affect the metabolism of several tissues in mammals.



Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

With increasing incidence and mortality rates, cancer remains one of the most devastating global non-communicable diseases. Restricted dosages and decreased bioavailability, often results in lower therapeutic outcomes, triggering the development of resistance to conventionally used drug/gene therapeutics. The development of novel therapeutic strategies using multimodal nanotechnology to enhance specificity, increase bioavailability and biostability of therapeutics with favorable outcomes is critical. Gated vectors that respond to endogenous or exogenous stimuli, and promote targeted tumor delivery without prematurely cargo loss are ideal. Mesoporous silica nanoparticles (MSNs) are effective delivery systems for a variety of therapeutic agents in cancer therapy. MSNs possess a rigid framework and large surface area that can incorporate supramolecular constructs and varying metal species that allow for stimuli-responsive controlled release functions. Its high interior loading capacity can incorporate combination drug/gene therapeutic agents, conferring increased bioavailability and biostability of the therapeutic cargo. Significant advances in the engineering of MSNs structural and physiochemical characteristics have since seen the development of nanodevices with promising in vivo potential. In this review, current trends of multimodal MSNs being developed and their use in stimuli-responsive passive and active targeting in cancer therapy will be discussed, focusing on light, redox, pH, and temperature stimuli.



Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1649-1663
Author(s):  
Oliver Z Nanassy ◽  
Kelly T Hughes

Abstract The Hin recombinase catalyzes a site-specific recombination reaction that results in the reversible inversion of a 1-kbp segment of the Salmonella chromosome. The DNA inversion reaction catalyzed by the Salmonella Hin recombinase is a dynamic process proceeding through many intermediate stages, requiring multiple DNA sites and the Fis accessory protein. Biochemical analysis of this reaction has identified intermediate steps in the inversion reaction but has not yet revealed the process by which transition from one step to another occurs. Because transition from one reaction step to another proceeds through interactions between specific amino acids, and between amino acids and DNA bases, it is possible to study these transitions through mutational analysis of the proteins involved. We isolated a large number of mutants in the Hin recombinase that failed to carry out the DNA exchange reaction. We generated genetic tools that allowed the assignment of these mutants to specific transition steps in the recombination reaction. This genetic analysis, combined with further biochemical analysis, allowed us to define contributions by specific amino acids to individual steps in the DNA inversion reaction. Evidence is also presented in support of a model that Fis protein enhances the binding of Hin to the hixR recombination site. These studies identified regions within the Hin recombinase involved in specific transition steps of the reaction and provided new insights into the molecular details of the reaction mechanism.



Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4587
Author(s):  
Fanny d’Orlyé ◽  
Laura Trapiella-Alfonso ◽  
Camille Lescot ◽  
Marie Pinvidic ◽  
Bich-Thuy Doan ◽  
...  

There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.



Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 181
Author(s):  
Kun Qiao ◽  
Caiyun Jiang ◽  
Min Xu ◽  
Bei Chen ◽  
Wenhui Qiu ◽  
...  

The von Willebrand factor type D (VWD) domain in vitellogenin has recently been found to bind tetrodotoxin. The way in which this protein domain associates with tetrodotoxin and participates in transporting tetrodotoxin in vivo remains unclear. A cDNA fragment of the vitellogenin gene containing the VWD domain from pufferfish (Takifugu flavidus) (TfVWD) was cloned. Using in silico structural and docking analyses of the predicted protein, we determined that key amino acids (namely, Val115, ASP116, Val117, and Lys122) in TfVWD mediate its binding to tetrodotoxin, which was supported by in vitro surface plasmon resonance analysis. Moreover, incubating recombinant rTfVWD together with tetrodotoxin attenuated its toxicity in vivo, further supporting protein–toxin binding and indicating associated toxicity-neutralizing effects. Finally, the expression profiling of TfVWD across different tissues and developmental stages indicated that its distribution patterns mirrored those of tetrodotoxin, suggesting that TfVWD may be involved in tetrodotoxin transport in pufferfish. For the first time, this study reveals the amino acids that mediate the binding of TfVWD to tetrodotoxin and provides a basis for further exploration of the molecular mechanisms underlying the enrichment and transfer of tetrodotoxin in pufferfish.



2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xu Tan ◽  
Sheng Zhang ◽  
Wei Song ◽  
Jia Liu ◽  
Cong Gao ◽  
...  

AbstractIn this study, a four-enzyme cascade pathway was developed and reconstructed in vivo for the production of d-p-hydroxyphenylglycine (D-HPG), a valuable intermediate used to produce β-lactam antibiotics and in fine-chemical synthesis, from l-tyrosine. In this pathway, catalytic conversion of the intermediate 4-hydroxyphenylglyoxalate by meso-diaminopimelate dehydrogenase from Corynebacterium glutamicum (CgDAPDH) was identified as the rate-limiting step, followed by application of a mechanism-guided “conformation rotation” strategy to decrease the hydride-transfer distance d(C6HDAP−C4NNADP) and increase CgDAPDH activity. Introduction of the best variant generated by protein engineering (CgDAPDHBC621/D120S/W144S/I169P with 5.32 ± 0.85 U·mg−1 specific activity) into the designed pathway resulted in a D-HPG titer of 42.69 g/L from 50-g/L l-tyrosine in 24 h, with 92.5% conversion, 71.5% isolated yield, and > 99% enantiomeric excess in a 3-L fermenter. This four-enzyme cascade provides an efficient enzymatic approach for the industrial production of D-HPG from cheap amino acids.



Sign in / Sign up

Export Citation Format

Share Document