scholarly journals Terpenoids: Lycopene in Tomatoes

Author(s):  
Dwi Setyorini

Terpenoids are compounds that only contain carbon and hydrogen, or carbon, hydrogen and oxygen that are aromatic, some terpenoids contain carbon atoms whose number is a multiple of five called isoprene units. There are many terpenoids in tomatoes, one of which is a tretrapenoid. A type of tetrapenoid, the carotenoids. Lycopene is a terpenoid found in tomatoes. Lycopene is the most carotenoid group in tomatoes. Lycopene plays a very important role in maintaining human health, including its role in the risk of chronic diseases such as cancer, heart disease, and others. The lycopene content in tomatoes depends on genetic factors, in this case the tomato variety, the environment where the tomatoes grow and the fruit storage environment, and the age of the tomatoes. The genetic factor of tomato fruit that greatly affects lycopene content in tomatoes is the color of the fruit. Color is generally an accurate indicator of lycopene content, with yellow cultivars containing less lycopene than red cultivars, and two out of three red cultivars contain more than orange cultivars. Shade tomato plants can increase the lycopene content in tomatoes. Aside from the lack of light in the tomato plant environment, the humidity and air temperature around the tomato plants also greatly affect the lycopene content in the fruit.

2020 ◽  
Vol 88 ◽  
pp. 103404 ◽  
Author(s):  
Xia Liu ◽  
Yu Gao ◽  
Hongyuan Yang ◽  
Limei Li ◽  
Yishan Jiang ◽  
...  

2009 ◽  
Vol 152 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Ana-Rosa Ballester ◽  
Jos Molthoff ◽  
Ric de Vos ◽  
Bas te Lintel Hekkert ◽  
Diego Orzaez ◽  
...  

Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 753-756 ◽  
Author(s):  
S. Sanogo ◽  
S. P. Pennypacker ◽  
R. E. Stevenson ◽  
A. A. MacNab

Field experiments were conducted to determine the relationship of tomato anthracnose to weather variables. Sixteen potted tomato plants were exposed to field conditions within rows of tomato plants for 4 consecutive days at various time periods during the 1993 and 1994 summer growing seasons. Incidence of fruit infection by Colletotrichum coccodes was correlated with rain variables (amount and duration of rain) alone and in combination with other meteorological factors. The best fitting regression equation, accounting for 72% of the variation in anthracnose incidence (arcsine-square root transformed), was Y = 111.77 - 1.16 HNRo, in which HNRo is the numbers of hours during which no rainfall occurs within 4-day intervals that tomato fruit were exposed to field conditions in central Pennsylvania.


2020 ◽  
Vol 18 (1) ◽  
pp. 147-156
Author(s):  
Bui Manh Minh ◽  
Ha Hong Hanh ◽  
Le Thi Thu Hien ◽  
Huynh Thi Thu Hue

Tomato (Solanum lycopersicum) is a nutritious fruit containing many secondary compounds with health benefits. The formation of tomato fruit through fertilization is controlled by auxin through Aux/IAA9 and ARF8 proteins. The mutated SlIAA9 gene leads to the parthenocarpic development of fruit or seedless tomato fruit. Nowadays, the CRISPR/Cas9 genome editing system is becoming increasingly popular in modifying desired genes on plant objects. In this study, gRNAs which target on tomato SlIAA9 gene were designed and inserted into CRISPR/Cas9 vectors. In addition, two strains of A. tumefaciens harboring pRGEB31-IAA9G2 and pRGEB32-IAA9G2 vectors carrying CRISPR/Cas9 expression system towards SlIAA9 gene in tomato were successfully created. The strain of A. tumefaciens harboring pRGEB31- IAA9G2 plasmid was used to develop transgenic tomato plants from Micro-Tom variety. PCR test showed that 5/14 plants had the presence of Cas9 gene in T0 plants. The transgenic plants have a normal morphology in comparation with the controls. The evaluation of mutant efficiency, type, and stability of mutations on the SlIAA9 will be conducted on next-generation plants when the mutations are stable and segregated into descendents.


Author(s):  
Dien Thi Kieu Pham ◽  
Kiet Thuong Do ◽  
Sanh Du Nguyen

The cherry tomato fruit size depends on the growth of the pericarp which is parenchymal cells. The blue light stimulates the expansion of cotyledon cells, hypocotyl cells and leaf cells. In this study, the cherry tomato fruit was used as a material to investigate the effects of the blue light on the pericarp cells growth in fruit growth stage and lycopene accumulation in fruit growth and ripening stage. After 7 days of the blue light (440, 450 or 460 nm) treatment, pericarp cells growth and physiological, biochemical changes of the pericarp cells of 7-day-old fruit pericarp piece in vitro were analyzed. The lycopene content and some organic compound contents of 42-day-old postharvest fruits treated by the blue light similarly in 7 days and 7, 21-day-old fruit wrapped with blue filter (440-510 nm filtered) in 7 days were measured. The results showed that the 450 nm wavelength blue light the increased pericarp thickness of 7-day-old fruits through the increasement of the pericarp cell diameter. The 460 nm wavelength blue light the increased lycopene content of 42-day-old postharvest fruits. The blue filter treatment increased the sugar total content of 7- day-old fruits and increased the lycopene content of 21-day-old fruits.


1999 ◽  
Vol 26 (4) ◽  
pp. 325 ◽  
Author(s):  
Xiao Xian Yang ◽  
Hiu Wan Choi ◽  
Shang Fa Yang ◽  
Ning Li

Naturally occurring cinnamic acids (CA) exist in both trans- and cis-isoforms. UV-light irradiation of trans-CA is able to produce cis-CA. cis-CA was found to possess auxin-like activity before. In contrast, the vapor of cis-CA induced an epinastic response in tomato plants just as ethylene does. Given the existence of a double bond in and the gaseous nature of cis-CA, we suspected that cis-CA might also function as an ethylene-like compound. To distinguish between these possibilities, we selected an ethylene perception-deficient tomato plant, Never-ripe (Nr), and an ethylene biosynthesis-deficient tomato plant, A11. Not only did the vapor of cis-CA fail to trigger A11 tomato fruit ripening but it also delayed the ripening of banana fruit. Moreover, the vapor of cis-CA induced epinasty and the ‘triple response’ in both the wild type and Nr tomato plants, indicating that the vapor of cis-CA does not act via an ethylene receptor-dependent pathway. Furthermore, the vapor of cis-CA inhibited the negative gravitropic response of stems of both etiolated Nr seedlings and young plants, whereas ethylene had little effect on the negative gravitropism of the Nr plants. These results support the conclusion that the action sites of the vapor of cis-CA and ethylene are fundamentally different.


2007 ◽  
Vol 82 (6) ◽  
pp. 941-945 ◽  
Author(s):  
F. Serio ◽  
J. J. Leo ◽  
A. Parente ◽  
P. Santamaria

2012 ◽  
Vol 75 (2) ◽  
pp. 297-303 ◽  
Author(s):  
XIAODONG XIA ◽  
YAGUANG LUO ◽  
YANG YANG ◽  
BRYAN VINYARD ◽  
KEITH SCHNEIDER ◽  
...  

Tomatoes have been implicated in salmonellosis outbreaks due to possible contamination through bacterial internalization during postharvest handling. This study was conducted to determine the effects of tomato variety, temperature differential between tomato pulp and bacterial suspension, and the time delay between stem removal and immersion in bacterial suspension on internalization of Salmonella enterica serovar Thompson in tomato fruit. Mature green tomatoes at 32.2°C were immersed in water containing approximately 106 CFU/ml S. enterica bacteria. Different tomato varieties (Mountain Spring, Applause, and BHN961), temperature differentials (−10, 0, and 10°F, or −5.6, 0, and 5.6°C, respectively), and post–stem removal times (0, 2, and 16 h) were evaluated for their effects on S. enterica internalization. The incidence and density of internalized cells were determined by culture enrichment and most-probable-number methods, respectively. Overall, variety and post–stem removal time by variety interaction significantly affected the incidence of S. enterica internalization (P < 0.0001), while temperature differential had no significant effect (P = 0.36). Mountain Spring tomatoes were less susceptible to S. enterica internalization than were Applause and BHN961. Increasing the time interval between stem removal and immersion greatly reduced pathogen internalization in BHN961 and Applause, while it had no effect in Mountain Spring tomatoes. The variety and interactions between varieties and post–stem removal times (P = 0.0363) and between temperature differentials and post–stem removal times (P = 0.0257) had significant effects on the populations of internalized S. enterica. Furthermore, all internalized S. enterica cells were found within the core tissue segments immediately underneath the stem scars.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 283-283 ◽  
Author(s):  
N. Li ◽  
J. Zhang ◽  
L. Yang ◽  
M. D. Wu ◽  
G. Q. Li

A tomato field in Qianjiang County, Hubei Province, China, was surveyed for gray mold in April 2013. Diseased leaves with V-shaped lesions along the margin and masses of grayish hyphae and conidia on the surface were collected from different plants. Eight Botrytis isolates were obtained from eight symptomatic leaves by plating the conidia from each leaf onto potato dextrose agar (PDA). A representative isolate (No. 116) was compared to two reference isolates, B. cinerea B05.10 (from Z. H. Ma, Zhejiang University, China) and B. pseudocinerea 10091 (from A. S. Walker, INRA, France) for morpho-cultural and molecular features. On PDA at 20°C, isolate 116 grew 13.8 mm/day (n = 9), which was similar to those of isolates 10091 (13.7 mm/day), and B05.10 (14.6 mm/day). The isolates all formed black sclerotia of similar shape and size (2 to 13 × 1 to 7 mm). To induce conidia production, the isolates each were inoculated onto tomato fruit (cv. Hezuo 903, Jiangsu Seed Co., China) using colonized agar plugs (each 6 mm in diameter), with four plugs per fruit and four fruits tested per isolate. After incubation of the fruit for 10 days (20°C), abundant conidia were produced on the fruit surface. The conidial size of isolate 116 (6.8 to 14.3 × 6.1 to 10.2 μm) was similar to that of isolates 10091 (7.7 to 12.2 × 7.0 to 9.8 μm) and B05.10 (7.0 to 14 × 6.6 to 10.5 μm). The three isolates were indistinguishable morphologically. The sequences of each of four nuclear genes (Bc-hch, G3PDH, HSP60, and MS547) and the microsatellite Bc6 locus (1,4) were determined and analyzed for each isolate. DNA was extracted from mycelium of each isolate and used as a template to amplify each gene by PCR using specific primers (1,2,4). Bc-hch-RFLP genotyping of the 1,171-bp amplicon (2,4) showed that isolates 116 and 10091 had a 601-bp DNA product, whereas B05.10 had a 517-bp product. The G3PDH, HSP60, and MS547 sequences of isolate 116 (GenBank Accession Nos. KJ534270, KJ534271, and KJ534273, respectively) and those of B. aclada, B. calthae, B. cinerea, B. pseudocinerea, and Sclerotinia sclerotiorum (3) were used for phylogenetic analysis. Isolate 116 and eight B. pseudocinerea isolates formed a subclade with 100% bootstrap support. Furthermore, two DNA markers, 86 bp for isolates 116 and 10091 vs. 170 bp for B05.10 were identified at the Bc6 locus. These results suggest that isolate 116 belongs to B. pseudocinerea (1,4). Pathogenicity of each isolate was tested by inoculation of each of five newly expanded tomato leaves on a 50-day-old plant (cv. Hezuo 903, Jiangsu Seed Co) with a 20-μl droplet of a conidial suspension (1 × 105 conidia/ml), using a pipette. Five noninoculated control leaves were treated similarly with water. The plants were all maintained at 20°C and 100% RH for 72 h, and lesion diameter was then measured. While control leaves remained asymptomatic, leaves inoculated with isolates 116, 10091, and B05.10 developed necrotic lesions averaging 19 to 20 mm in diameter. A fungus re-isolated from the lesions on isolate-116–inoculated leaves formed colonies with morphology identical to that of the original isolate 116. To our knowledge, this is the first report of B. pseudocinerea on tomato in China. The remaining seven isolates were identified as B. cinerea based on Bc-hch-RFLP genotyping (data not shown), suggesting that B. pseudocinerea may infect tomato plants at a low frequency in this region of China. References: (1) E. Fournier et al. Mol. Ecol. Notes 2:253, 2002. (2) E. Fournier et al. Mycologia 95:251, 2003. (3) P. R. Johnston et al. Plant Pathol. 63:888, 2014. (4) A. S. Walker et al. Phytopathology 101:1433, 2011.


Sign in / Sign up

Export Citation Format

Share Document