scholarly journals Estimation of Hidden Energy Losses

2021 ◽  
Author(s):  
Borys Pleskach

Most industrial or municipal energy consumers involve the conversion of electricity, either into useful products or into other types of energy. For example, lighting systems, heating systems, air or water supply systems. And in all such systems there are energy losses, which can be divided into open, or technological and hidden, or abnormal. Open losses are inherent in the technological process itself and depend on the principle of energy conversion, flow conditions, the type of equipment received, and so on. Hidden losses in the technological system occur accidentally due to the appearance of defects in the equipment, erroneous actions of personnel, changes in uncontrolled external conditions. The paper considers a method of detecting and estimating hidden energy losses, based on the analysis of energy consumption precedents and building a decision support system aimed at eliminating such energy losses. Models of energy consumption precedents are formed on the basis of controlled technological parameters and their statistical estimates. In the future, local standards of efficient energy consumption are formed from individual precedents. The advantage of this method of estimating latent energy losses is the adaptation of standards of efficient energy consumption to the conditions of the consumer.

2021 ◽  
Vol 308 ◽  
pp. 01010
Author(s):  
Shen Yizhi ◽  
Wei Minrui ◽  
Hou Bowen

Due to the accelerated industrial and urbanization development, climate change, and increasing populations and life quality expectations, the issue of drinking water shortage has raised much public awareness. The desalination system has been widely applied to accommodate the growing demand for clean water resources despite the continuous concerns about its relatively higher energy consumption and environmental footprints. This research conducted a case study in the Tampa Bay Regional Surface Water Treatment Plant and Tampa Bay Seawater Desalination Plant in Florida, U.S. It analysed the performance and environmental impacts of conventional and desalination water supply systems on three sides: energy consumption, carbon footprint, and solid waste. Potential negative effects of both water supply systems are generally associated with surface water ecology, groundwater aquifers, coastal environment, and marine organisms. Various environmental impact mitigation plans have been proposed to prevent or restore the detriments caused by carbon dioxide emissions, plant construction, and concentrated brine discharge. Due to the deficiency in freshwater resources, desalination technology is more promising through proper regulations and regional sustainable development.


2020 ◽  
Vol 82 (12) ◽  
pp. 2745-2760
Author(s):  
Iliana Cardenes ◽  
Afreen Siddiqi ◽  
Mohammad Mortazavi Naeini ◽  
Jim W. Hall

Abstract A large part of operating costs in urban water supply networks is usually due to energy use, mostly in the form of electricity consumption. There is growing pressure to reduce energy use to help save operational costs and reduce carbon emissions. However, in practice, reducing these costs has proved to be challenging because of the complexity of the systems. Indeed, many water utilities have concluded that they cannot practically achieve further energy savings in the operation of their water supply systems. This study shows how a hybrid linear and multi-objective optimization approach can be used to identify key energy consumption elements in a water supply system, and then evaluate the amount of investment needed to achieve significant operational gains at those points in the supply network. In application to the water supply system for the city of London, the method has shown that up to 18% savings in daily energy consumption are achievable. The optimal results are sensitive to discount rate and the financial value placed on greenhouse gas emissions. Valuation of greenhouse gas emissions is necessary to incentivise high levels of energy efficiency. The methodology can be used to inform planning and investment decisions, with specific focus on reducing energy consumption, for existing urban water supply systems.


2011 ◽  
Vol 356-360 ◽  
pp. 2175-2181
Author(s):  
Wei Wei Mo ◽  
Qiong Zhang ◽  
Rong Chang Wang

Under the rapid growth of world’s economy and population, the demand for water and energy has been increasing accordingly. Moreover, water and energy are interrelated and form a reinforcing feedback loop. Energy is used not only onsite of water supply systems, but also indirectly for producing materials used in the water systems. As a result, it is important to understand and evaluate the energy embodiment of water supply for sustainable water and energy management. This study uses the Economic Input-Output Life Cycle Assessment software to estimate and compare the embodied energy of one China water supply system (System A) and one US water supply system (System B). It has been found that System B in the US has comparable direct operational energy consumption with System A in China; however, System B consumes much more indirect energy and constructional energy than System A. Possible reasons for the higher indirect energy use in System B might be more administrative and engineering (maintenance and repairing) services involved, lower transportation efficiency, more self water usage within the system and higher labor rates. To satisfy the water demand for the large population, China’s water supply systems have to reduce direct energy consumption during the operation phase by conducting energy budget and adopting energy efficient technologies.


SWorldJournal ◽  
2018 ◽  
pp. 37-44
Author(s):  
Huy Nguyen ◽  
Ngoc Nguyen

In water supply systems, one of the most important factors is corrosion of pipelines from steel and cast-iron pipes, an increase in pressure losses, which reduces water flow and increases energy consumption. Excessive corrosion intensity is determined by


SWorldJournal ◽  
2018 ◽  
pp. 37-44
Author(s):  
Huy Nguyen ◽  
Ngoc Nguyen

In water supply systems, one of the most important factors is corrosion of pipelines from steel and cast-iron pipes, an increase in pressure losses, which reduces water flow and increases energy consumption. Excessive corrosion intensity is determined by


2020 ◽  
Vol 25 (2) ◽  
pp. 53-60
Author(s):  
Pleskach B.M. ◽  

The article presents an approach to the formation of a decision support system in the management of energy consumption of production technological systems. Such systems allow the company to detect and respond in a timely manner to the appearance of hidden energy losses, to carry out organizational measures aimed at energy saving and to optimize the timing and scope of repair and restoration work. The approach is based on the modeling of stationary sections of energy consumption, presented in the form of precedents, their accumulation and subsequent analysis in the space of influential technological parameters. In addition to the base of precedents, the system includes software modules for assessment and formation of the profile of hidden energy losses, modules of technical condition, forecast and formation of precedents. The analysis of precedents consists in the selection of similar cases of energy consumption, the formation of efficient energy consumption functions and the calculation of energy losses with its help. Hidden energy losses can be calculated in real time for all technological systems of the enterprise. This allows you to build a profile of energy losses of the enterprise. The advantage of this approach in comparison with the known ones is that it allows to adapt to technological systems with different energy sources. The article emphasizes that the method can work with the energy manager with both linear and nonlinear dependence of energy consumption on process parameters. However, the limitations of this approach are noted. Thus, the determination of latent energy losses and technical condition of the equipment requires the participation of qualified specialists of the enterprise, who must be able to analyze the results and propose measures to eliminate energy losses.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5101
Author(s):  
Izabela Zimoch ◽  
Ewelina Bartkiewicz ◽  
Joanna Machnik-Slomka ◽  
Iwona Klosok-Bazan ◽  
Adam Rak ◽  
...  

A prerequisite for achieving high energy efficiency of water supply systems (understood as using less energy to perform the same task) is the appropriate selection of all elements and their rational use. Energy consumption in water supply systems (WSS) is closely connected with water demand. Especially in the case of oversized water supply systems for which consumers’ water demand is at least 50% less than previously planned and flow velocity in some parts of the system is below 0.01 m·s−1, this problem of excessive energy consumption can be observed. In the literature, it is difficult to find descriptions and methods of energy management for such a case. The purpose of this study was both an evaluation of the current demand of an oversized WSS and a preliminary technical analysis of the possibility for energy saving. Solutions are presented that resulted in improvements in energy management, thus increasing energy efficiency. The conducted analyses indicate the wide use of numerical, hydraulic models, among others, for the needs of the sustainable oversize water supply systems management in order to improve energy efficiency. Those simulations only give energy consumption results as a first step in the process of decision-making for the modernization process, in which investment costs should be taken into account as a second step. Thus, this paper emphasizes the crucial role of hydraulic models as a good analytical tool used in decision support systems (DSS), especially for large, oversized water supply systems.


Author(s):  
Ivana Ćipranić ◽  
Marija Jevrić ◽  
Milan Radulović ◽  
Goran Sekulić

Abstract Due to the importance of overall sustainable development, efficient energy management should be as significant as water resource management within every water supply system. The pressure reduction, as a measure for loss reduction, not only guarantees less leakage but also minimizes energy consumption. The relationship between energy consumption and pressure in water supply systems has been the subject of many previous studies, mainly based on measurements in real systems. However, a methodology for beforehand assessment of energy savings which occur due to the pressure reduction, has not been proposed yet. The paper proposed a method for the assessment of energy savings in relation to pressure reduction, implemented it on the hypothetical water supply system and verified it on the real system. Results led to the conclusion that the proposed methodology can be considered as a successful tool for better energy and water management. It enables water utility management to estimate energy saving in water supply system in advance, based on the hydraulic model of the system.


Sign in / Sign up

Export Citation Format

Share Document