scholarly journals Primary Central Nervous System Neuroblastoma: An Enigmatic Entity

2021 ◽  
Author(s):  
Rakesh Mishra ◽  
Amit Agrawal

Neuroblastoma is one of the most common solid tumour in the paediatric age group. Central nervous system (CNS) involvement in neuroblastoma is commonly due to metastasis from the extracranial primary. Primary CNS Neuroblastoma (PCNS-NB) is a rare entity and highlights errors in development of neural crest cells and CNS. A lot has been published since the first description of PCNS-NB four decades ago. Over the years, neuroscientists, geneticists, and clinicians have improved the understanding of PCNS-NB. PCNS-NB is an enigmatic entity with variable presentation, epidemiology, clinical features and outcomes. Recent update in knowledge is seen in 2016 WHO classification of CNS tumours with reclassification of CNS neuroblastoma. It further subclassified different histological variants of PCNS-NB and its molecular correlates. Most common histological subtype of PCNS-NB is neuroblastoma followed by ganglioneuroblastoma. Studies support the view that younger age group, less number of lesions, ganglioneuroblastoma histology subtype and surgical management are good prognostic indicators. This chapter provides an updated overview of epidemiology, clinical features, histological and molecular diagnosis, and outcomes of PCNS-NB in addition to the role of adjuvant therapy.

2021 ◽  
Vol 10 (36) ◽  
pp. 3109-3114
Author(s):  
Deepak Panasseril Jayapradeep ◽  
Muktha R. Pai

BACKGROUND The central nervous system (CNS) consisting of brain and spinal cord is a delicate and a complex organ. Even a minor lesion within the central nervous system can significantly affect the higher functions and the voluntary and involuntary systems of the body. The CNS tumours have become one among the leading cause of cancer death in the present days. Early diagnosis and proper grading of these tumours can significantly improve the patient outcome. This study was conducted with an objective of correlating the clinical features with histomorphological characteristics of the primary CNS tumours and to grade the primary CNS tumors based on World Health Organization (WHO) classification. METHODS This was a descriptive observational study. A total of 117 cases of primary CNS tumours were collected from January 2012 to June 2017 at the central diagnostic laboratory of A.J Institute of Medical Sciences and Research Centre, Mangalore belonging to the Dakshina Kannada district of Karnataka, India. Out of 117 cases, 35 cases were retrieved from the files and remaining 82 were fresh cases. The tissues were fixed in 10 % buffered formalin and routinely processed. The tissue sections were stained with haematoxylin and eosin and were classified based on WHO classification. Special stain like reticulin was done in selected cases to establish the diagnosis. Patient details including the complete clinical history was collected to correlate with the histological findings. RESULTS Meningeal tumours were the maximum (37.6 %) among the central nervous system tumours in present study. Clinically, most of them (40.9 %) presented with headache and seizures. The commonest clinical presentation of central nervous system tumours observed in the present study was seizures (31.6 %). Middle cranial fossa was the preferred site for the CNS tumours (35 %). The study showed a female preponderance for CNS tumour with a male to female ratio of 1 : 1.3. The mean age for primary CNS tumours observed in the present study was 43.94 years. CONCLUSIONS In the present study, a systematic analysis of primary central nervous system tumour has been done giving due importance to the clinical features. The present study also showed a significant correlation with that of other studies. Despite of having modern imaging technique, the histopathological examination remains as the gold standard in diagnosing CNS tumours. KEY WORDS CNS Tumours, Neuroepithelial Tumours, Meningioma, Astrocytoma, Schwannoma.


2020 ◽  
pp. 49-56
Author(s):  
T. Shirshova

Disorders of the musculoskeletal system in school-age children occupy 1-2 places in the structure of functional abnormalities. Cognitive impairment without organic damage to the central nervous system is detected in 30-56% of healthy school children. Along with the increase in the incidence rate, the demand for rehabilitation systems, which allow patients to return to normal life as soon as possible and maintain the motivation for the rehabilitation process, is also growing. Adaptation of rehabilitation techniques, ease of equipment management, availability of specially trained personnel and availability of technical support for complexes becomes important.


2018 ◽  
Vol 25 (26) ◽  
pp. 3096-3104 ◽  
Author(s):  
Daniele Mauro ◽  
Gaetano Barbagallo ◽  
Salvatore D`Angelo ◽  
Pasqualina Sannino ◽  
Saverio Naty ◽  
...  

In the last years, an increasing interest in molecular imaging has been raised by the extending potential of positron emission tomography [PET]. The role of PET imaging, originally confined to the oncology setting, is continuously extending thanks to the development of novel radiopharmaceutical and to the implementation of hybrid imaging techniques, where PET scans are combined with computed tomography [CT] or magnetic resonance imaging[MRI] in order to improve spatial resolution. Early preclinical studies suggested that 18F–FDG PET can detect neuroinflammation; new developing radiopharmaceuticals targeting more specifically inflammation-related molecules are moving in this direction. Neurological involvement is a distinct feature of various systemic autoimmune diseases, i.e. Systemic Lupus Erythematosus [SLE] or Behcet’s disease [BD]. Although MRI is largely considered the gold-standard imaging technique for the detection of Central Nervous System [CNS] involvement in these disorders. Several patients complain of neuropsychiatric symptoms [headache, epilepsy, anxiety or depression] in the absence of any significant MRI finding; in such patients the diagnosis relies mainly on clinical examination and often the role of the disease process versus iatrogenic or reactive forms is doubtful. The aim of this review is to explore the state-of-the-art for the role of PET imaging in CNS involvement in systemic rheumatic diseases. In addition, we explore the potential role of emerging radiopharmaceutical and their possible application in aiding the diagnosis of CNS involvement in systemic autoimmune diseases.


2019 ◽  
Vol 20 (7) ◽  
pp. 750-758 ◽  
Author(s):  
Yi Wu ◽  
Hengxun He ◽  
Zhibin Cheng ◽  
Yueyu Bai ◽  
Xi Ma

Obesity is one of the main challenges of public health in the 21st century. Obesity can induce a series of chronic metabolic diseases, such as diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver, which seriously affect human health. Gut-brain axis, the two-direction pathway formed between enteric nervous system and central nervous system, plays a vital role in the occurrence and development of obesity. Gastrointestinal signals are projected through the gut-brain axis to nervous system, and respond to various gastrointestinal stimulation. The central nervous system regulates visceral activity through the gut-brain axis. Brain-gut peptides have important regulatory roles in the gut-brain axis. The brain-gut peptides of the gastrointestinal system and the nervous system regulate the gastrointestinal movement, feeling, secretion, absorption and other complex functions through endocrine, neurosecretion and paracrine to secrete peptides. Both neuropeptide Y and peptide YY belong to the pancreatic polypeptide family and are important brain-gut peptides. Neuropeptide Y and peptide YY have functions that are closely related to appetite regulation and obesity formation. This review describes the role of the gutbrain axis in regulating appetite and maintaining energy balance, and the functions of brain-gut peptides neuropeptide Y and peptide YY in obesity. The relationship between NPY and PYY and the interaction between the NPY-PYY signaling with the gut microbiota are also described in this review.


2018 ◽  
Vol 17 (4) ◽  
pp. 272-279 ◽  
Author(s):  
Yudan Zhu ◽  
Shuzhang Zhang ◽  
Yijun Feng ◽  
Qian Xiao ◽  
Jiwei Cheng ◽  
...  

Background & Objective: The large conductance calcium-activated potassium (BK) channel, extensively distributed in the central nervous system (CNS), is considered as a vital player in the pathogenesis of epilepsy, with evidence implicating derangement of K+ as well as regulating action potential shape and duration. However, unlike other channels implicated in epilepsy whose function in neurons could clearly be labeled “excitatory” or “inhibitory”, the unique physiological behavior of the BK channel allows it to both augment and decrease the excitability of neurons. Thus, the role of BK in epilepsy is controversial so far, and a growing area of intense investigation. Conclusion: Here, this review aims to highlight recent discoveries on the dichotomous role of BK channels in epilepsy, focusing on relevant BK-dependent pro- as well as antiepileptic pathways, and discuss the potential of BK specific modulators for the treatment of epilepsy.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 715
Author(s):  
Emilio Fernández-Espejo ◽  
Fernando Rodríguez de Fonseca ◽  
Juan Suárez ◽  
Eduardo Tolosa ◽  
Dolores Vilas ◽  
...  

Background. Salivary α-synuclein (aSyn) and its nitrated form, or 3-nitrotyrosine-α-synuclein (3-NT-αSyn), hold promise as biomarkers for idiopathic Parkinson’s disease (IPD). Nitrative stress that is characterized by an excess of 3-nitrotyrosine proteins (3-NT-proteins) has been proposed as a pathogenic mechanism in IPD. The objective is to study the pathological role of native αSyn, 3-NT-αSyn, and 3-NT-proteins in the saliva and submandibulary glands of patients with IPD. Methods. The salivary and serum αSyn and 3-NT-proteins concentration is evaluated with ELISA in patients and controls. Correlations of αSyn and 3-NT-proteins content with clinical features of the disease are examined. Immunohistochemical 3-NT-αSyn expression in submandibulary gland sections is analyzed. Results. (a) Salivary concentration and saliva/serum ratios of native αSyn and 3-NT-proteins are similar in patients and controls; (b) salivary αSyn and 3-NT-proteins do not correlate with any clinical feature; and (c) three patterns of 3-NT-αSyn-positive inclusions are observed on histological sections: rounded “Lewy-type” aggregates of 10–25 µm in diameter, coarse deposits with varied morphology, and spheroid inclusions or bodies of 3–5 µm in diameter. “Lewy-type” and coarse inclusions are observed in the interlobular connective tissue of the gland, and small-sized bodies are located within the cytoplasm of duct cells. “Lewy-type” inclusions are only observed in patients, and the remaining patterns of inclusions are observed in both the patients and controls. Conclusions. The patients’ saliva presents a similar concentration of native αSyn and 3-nitrotyrosine-proteins than that of the controls, and no correlations with clinical features are found. These findings preclude the utility of native αSyn in the saliva as a biomarker, and they indicate the absence of nitrative stress in the saliva and serum of patients. As regards nitrated αSyn, “Lewy-type” inclusions expressing 3-NT-αSyn are observed in the patients, not the controls—a novel finding that suggests that a biopsy of the submandibulary gland, if proven safe, could be a useful technique for diagnosing IPD. Finally, to our knowledge, this is also the first description of 3-NT-αSyn-immunoreactive intracytoplasmic bodies in cells that are located outside the nervous system. These intracytoplasmic bodies are present in duct cells of submandibulary gland sections from all subjects regardless of their pathology, and they can represent an aging or involutional change. Further immunostaining studies with different antibodies and larger samples are needed to validate the data.


Sign in / Sign up

Export Citation Format

Share Document