scholarly journals Life Cycle Assessment of Ordinary Portland Cement (OPC) Using both Problem Oriented (Midpoint) Approach and Damage Oriented Approach (Endpoint)

2021 ◽  
Author(s):  
Busola D. Olagunju ◽  
Oludolapo A. Olanrewaju

The concern for environmental related impacts of the cement industry is fast growing in recent times. The industry is challenged with high environmental impact which spans through the entire production process. Life cycle assessment (LCA) evaluates the environmental impact of product or process throughout the cycle of production. This can be done using either or both midpoint (process-oriented) and endpoint (damage-oriented) approaches of life cycle impact assessment (LCIA). This study assessed the environmental impact of 1 kg Ordinary Portland Cement (OPC) using both approaches of LCIA. This analysis was carried out using a data modeled after the rest of the world other than China, India, Europe, US and Switzerland. The dataset was taken from Ecoinvent database incorporated in the SimaPro 9.0.49 software. The result of the analysis showed that clinker production phase produced the highest impact and CO2 is the highest pollutant emitter at both endpoint and midpoint approaches. This is responsible for global warming known to affect both human health and the ecosystem. Also, toxicity in form of emission of high copper affects the ecosystem as well as humans. In addition, high fossil resources (crude oil) are consumed and pose the possibility for scarcity.

Author(s):  
Rina Annisa ◽  
Benno Rahardyan

Geothermal potential in Indonesia estimate can produced renewable energy 29 GW, and until 2016 it still used 5% or about 1643 MW in. From that result, about 227 MW produced by Wayang Windu geothermal power plant. The Input were raw material, energy and water. These input produced electricity as main product, by product, and also other output that related to environment i.e. emission, solid waste and waste water. All environmental impacts should be controlled to comply with environmental standard, and even go beyond compliance and perform continual improvement.  This research will use Life Cycle Assessment method based on ISO 14040 and use cradle to gate concept with boundary from liquid steam production until electricity produced, and Megawatt Hours as the functional unit. Life Cycle Inventory has been done with direct input and output in the boundary and resulted that subsystem of Non Condensable Gas and condensate production have the largest environmental impact. LCI also show that every MWh electricity produced, it needed 6.87 Ton dry steam or 8.16 Ton liquid steam. Global Warming Potential (GWP) value is 0.155 Ton CO2eq./MWh, Acidification Potential (AP) 1.69 kg SO2eq./MWh, Eutrophication Potential (EP) 5.36 gPO4 eq./MWh and land use impacts 0.000024 PDF/m2. Life Cycle Impact Assessment resulted that AP contribute 78% of environmental impact and 98% resulted from H2S Non Condensable Gas. Comparison results with another dry steam geothermal power plant show that impact potential result of the company in good position and there’s a strong relation between gross production, GWP and AP value.Keywords: Life cycle assessment; Geothermal; Continual Improvement; Global Warming Potential; Acidification Potential


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5656
Author(s):  
Nurullah Yildiz ◽  
Hassan Hemida ◽  
Charalampos Baniotopoulos

The intensive increase of global warming every year affects our world negatively and severely. The use of renewable energy sources has gained importance in reducing and eliminating the effect of global warming. To this end, new technologies are being developed to facilitate the use of these resources. One of these technological developments is the floating wind turbine. In order to evaluate the respective environmental footprint of these systems, a life cycle assessment (LCA) is herein applied. In this study, the environmental impact of floating wind turbines is investigated using a life cycle assessment approach and the results are compared with the respective ones of onshore and jacket offshore wind turbines of the same power capacity. The studied floating wind turbine has a square foundation that is open at its centre and is connected to the seabed with a synthetic fibre-nylon anchorage system. The environmental impact of all life cycles of such a structure, i.e., the manufacture, the operation, the disposal, and the recycling stages of the wind turbines, has been evaluated. For these floating wind turbines, it has been found that the greatest environmental impact corresponds to the manufacturing stage, whilst the global warming potential and the energy payback time of a 2 MW floating wind turbine of a barge-type platform is higher than that of the onshore, the jacket offshore (2 MW) and the floating (5 MW) wind turbines on a sway floating platform.


2021 ◽  
Vol 896 (1) ◽  
pp. 012050
Author(s):  
I P Sari ◽  
W Kuniawan ◽  
F L Sia

Abstract Tofu is one of the processed soybean foods that are very popular with Indonesian society. Despite the popularity of Tofu, Tofu production in Indonesia is generally small and medium, reaching 500 kg per day, as in the tofu factory in Semanan, West Jakarta. The purpose of this study is to analyze the environmental impact of tofu production in West Jakarta. The life cycle assessment (LCA) approach was used to achieve this goal with SimaPro software for impact calculations. This research applies the LCA cradle to gate, which consists of soybean cultivation, transportation, and tofu production processes. The environmental impacts of tofu production analyzed in this study include global warming, ozone depletion, acidification, and eutrophication. The impact analysis showed that the acquisition of soybeans, which consisted of soybean cultivation and transportation, had the most significant environmental impact with a global warming potential value of 0.882 kg CO2 eq out of a total of 0.978 CO2 eq for the whole process.


Rekayasa ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 197-204
Author(s):  
Marudut Sirait

Tujuan dari makalah ini adalah untuk mengidentifikasi potensi dampak lingkungan selama proses produksi gula tebu di Jawa Timur Indonesia. Studi ini menggunakan pendekatan Life Cycle Assesment (LCA) untuk mengevaluasi dampak  lingkungan selama proses produksi gula dari tebu. Analisis LCA fokus pada pengolahan tebu menjadi gula, yang terdiri dari proses persiapan, proses miling, centrifugal separation, proses clarification, proses evaporation, dan proses crystalization. Hasil Life Cycle Impact Assessment (LCIA) diekpresikan dengan metode EDIB 2003, menunjukkan bahwa dampak lingkungan yang paling signifikan terhadap penurunan kualitas lingkungan adalah  global warming, acidification, eutrofikasi, human toxicity air, dan ozone depletion. Selanjutnya, proses produksi gula yang paling besar kontribusnya pada dampak lingkungan adalah proses penggilingan/miling, diikuti oleh proses centrifugal seperation,proses clarification, proses crystallization,proses evaporation, dan proses preperation untuk semua kategori dampak lingkungan.Life Cycle Assessment Study of Sugarcane: The case of East JavaABSTRACTThe purpose of this paper is to identify potential environmental impacts during the process of sugarcane production in East Java, Indonesia. This study utilized Life Cycle Assessment (LCA) approach to evaluate the environmental impact during the manufacturing of sugar cane. LCA analysis focuses on processing sugarcane, which consists of the preparation process, the milling process, centrifugal separation, the clarification process, the evaporation process, and the crystalization process. The Life Cycle Impact Assessment (LCIA) was expressed by the EDIB 2003 method. The result showed that the most significant environmental impacts on environmental degradation were global warming, acidification, eutrophication, human toxicity of water, and ozone depletion. Furthermore, the production process with the greatest contribution to environmental impact were the miling process, followed by centrifugal seperation process, clarification process, crystallization process, evaporation process, and preperation process for all categories of environmental impacts.Keywords: Environmental Impact, Energy, Sugarcane, Global Warming, Life Cycle Assessment


2021 ◽  
Author(s):  
BURÇİN ATILGAN TÜRKMEN

Abstract A massive increase in the use and production of masks worldwide has been seen in the current COVID-19 pandemic, which has contributed to reducing the transmission of the virus globally. This paper aims to evaluate the environmental impacts of disposable medical masks using the Life Cycle Assessment (LCA) method, first for the selected functional unit related to the manufacturing of one disposable medical mask and then for the global manufacturing of this type of mask in 2020. The inventory data was constructed directly from the industry. The system boundaries include the fabric, nose wire, and ear loops parts, transportation of materials, body making, ultrasonic vending, and packaging steps. The results suggest that the global warming potential of a disposable medical mask is 0.02 g CO2-Eq. for which the main contributor is the packaging step (44%) followed by the life cycle of fabric (27%), and nose wire (14%) parts. In total, 52 billion disposable medical masks used worldwide consumes 25 TJ of energy in 2020. The global warming potential of disposable medical masks supplied in a year of the COVID-19 pandemic is 1.1 Mt CO2 eq., equivalent to around 1.3 billion return flights from Istanbul to New York. This paper assessed the hotspots in the medical mask, allowing for a significant reduction in the environmental impact of mask use. This can be used as a roadmap for future mask designs.


2021 ◽  
Vol 22 (2) ◽  
pp. 147-161
Author(s):  
Rahmah Arfiyah Ula ◽  
Agus Prasetya ◽  
Iman Haryanto

ABSTRACT The primary municipal waste treatment in Tuban Regency, East Java, was landfilling, besides the small amount of the waste was turned to compost. Landfilling causes global warming, which leads to climate change due to CH4 emission. This environmental impact could be worst by the population growth that increases the amount of waste. This study aimed to evaluate the environmental impact on waste management in the Gunung Panggung landfill in Tuban Regency and its alternative scenarios using Life Cycle Assessment (LCA). Four scenarios were used in this study. They are one existing scenario and three alternative scenarios comprising landfilling, composting, and anaerobic digestion. The scope of this study includes waste transportation to waste treatment which is landfilling, composting, and anaerobic digestion (AD). The functional unit of this analysis is per ton per year of treated waste. Environmental impacts selected are global warming potential, acidification potential, and eutrophication potential. The existing waste management in Gunung Panggung landfill showed the higher global warming potential because of the emission of CO2 and cost for human health, which is 6.379.506,17 CO2 eq/year and 5,92 DALY, respectively. Scenario 3 (landfilling, composting, and AD; waste sortation 70%) showed a lower environmental impact than others, but improvements were still needed. Covering compost pile or controlling compost turning frequency was proposed for scenario 3 amendment. Keywords: environmental impact, landfill, life cycle assessment, waste management   ABSTRAK Landfill merupakan pengelolaan sampah utama di tempat pemrosesan akhir (TPA) Gunung Panggung Kabupaten Tuban. Selain landfill, pengomposan diterapkan untuk mengolah sebagian kecil sampahnya. Landfill menghasilkan gas metana yang menyebabkan pemanasan global dan memicu perubahan iklim. Pertambahan penduduk memperbanyak sampah yang perlu diolah di TPA dan dapat memperparah dampak lingkungan yang ditimbulkan. Tujuan penelitian ini adalah menilai dampak lingkungan dari pengelolaan sampah eksisting di TPA Gunung Panggung Kabupaten Tuban Jawa Timur beserta skenario alternatifnya menggunakan Life Cycle Assessment (LCA). Terdapat satu skenario eksisting dan tiga skenario alternatif pengelolaan sampah yaitu landfilling, pengomposan, dan fermentasi anaerob (anaerobic digestion). Ruang lingkup studi meliputi pengangkutan sampah, pengelolaan sampah dengan cara pengomposan, Anaerobic Digestion (AD), dan landfill. Satuan fungsional yang digunakan yakni ton sampah yang diolah per tahun. Dampak lingkungan yang dipelajari di antaranya: pemanasan global, asidifikasi, dan eutrofikasi. Dampak lingkungan skenario eksisting menunjukkan nilai tertinggi terutama pada pemanasan global (6.379.506,17 CO2eq/tahun) dan kerugian pada kesehatan manusia (5,92 DALY). Skenario alternatif 3, yang meliputi pengelolaan secara landfill, pengomposan, dan AD menunjukkan dampak lingkungan yang kecil, namun memerlukan perbaikan. Perbaikan untuk skenario 3 yaitu dengan menambahkan penutup pada tumpukan kompos atau mengontrol frekuensi pembalikan kompos untuk mengurangi emisi NH3. Kata kunci: dampak lingkungan, life cycle assessment, pengelolaan sampah, tempat pemrosesan akhir


2011 ◽  
Vol 471-472 ◽  
pp. 999-1004 ◽  
Author(s):  
Mariam Al-Ma'adeed ◽  
Gozde Ozerkan ◽  
Ramazan Kahraman ◽  
Saravanan Rajendran ◽  
Alma Hodzic

Although recycled polymers and reinforced polymer composites have been in use for many years there is little information available on their environmental impacts. The goal of the present study is to analyze the environmental impact of new composite materials obtained from the combination of recycled thermoplastics (polypropylene [PP] and polyethylene [PE]) with mineral fillers like talc and with glass fiber. The environmental impact of these composite materials is compared to the impact of virgin PP and PE. The recycled and virgin materials were compared using life cycle assessment method according to their environmental effects. Within the scope of the study, GaBi software was used for Life Cycle Assessment (LCA) analysis. From cradle-to-grave life cycle inventory studies were performed for 1 kg of each of the thermoplastics. Landfilling was considered as reference scenario and compared with filled recycled plastics. A quantitative impact assessment was performed for four environmental impact categories, global warming (GWP) over a hundred years, human toxicity (HTP), abiotic depletion (ADP) and acidification potential (AP) were taken into consideration during LCA. In the comparison of recycled and virgin polymers, it was seen that recycling has lower environmental effect for different impact assessment methods like acidification potential, abiotic depletion, human toxicity and global warming.


Sign in / Sign up

Export Citation Format

Share Document