scholarly journals Device Diagnosing Health of Bovine

2021 ◽  
Author(s):  
Sumi Kankana Dewan

The research problem taken into consideration for study dealt with the design of a low cost hand-held ZnO based sensing device for testing blood serum of bovine (cow), to diagnose their health of liver and kidney by detecting four biological parameters in-situ. Zinc oxide nanoparticles were synthesised by chemical bath deposition method. Using transmission electron microscopy (TEM) and X-ray diffraction (XRD), the size of ZnO nanoparticles were determined. It shows a hexagonal wurtzite structure with an orientation along the direction (101). TEM images show various morphological changes of nanostructured ZnO. The average crystallite sizes of ZnO molecule is found to be 0.004 nm from XRD. The constituents of nano sized ZnO are found to be of Zn (57.27%), Cl (33.01%), C (8.04%) and O (1.68%) as obtained from EDS. The samples of blood serum of bovine, avian and caprine are characterised by transmission electron microscopy (TEM) and Benesphera Avantor Performance (Biochemistry Analyser). ZnO based sensing device is designed with the help of Arduino and Microsoft visual basic 6.0 version software. The resistance of blood serum is taken into consideration for carrying out the experiment. It has been measured after adding ZnO (1 μl) to blood serum of (1 ml) to detect four biological parameters – Serum glutamate pyruvate transaminase (SGPT), Serum glutamic-oxaloacetic transaminase (SGOT), Blood urea nitrogen (BUN) and creatinine of bovine more precisely. The device can indicate whether the blood serum of bovine have normal/diseased parameters. This device will also help the veterinarians in the field.

Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


1990 ◽  
Vol 38 (10) ◽  
pp. 1469-1478 ◽  
Author(s):  
D R Eisenmann ◽  
A H Salama ◽  
A M Zaki ◽  
S H Ashrafi

Colchicine is known to affect secretory, transport, and degradative functions of ameloblasts. The effects of colchicine on membrane-associated calcium and Ca2+,Mg2(+)-ATPase in secretory and maturation ameloblasts were investigated cytochemically. The pyroantimonate (PPA) method was used for localizing calcium and a modified Wachstein-Meisel medium was used to localize Ca2+,Mg2(+)-ATPase. Sections representing secretory and early maturation stages were examined by transmission electron microscopy. Morphological changes induced by colchicine included dislocated organelles and other well-established reactions to such anti-microtubule drugs. Calcium pyroantimonate (Ca-PA) deposits in most ameloblast types were markedly reduced, with the greater reduction occurring in those cells more severely altered morphologically. However, the cell membranes of both control and experimental smooth-ended maturation ameloblasts were essentially devoid of Ca-PA. The normal distribution and intensity of Ca2+,Mg2(+)-ATPase was not affected by colchicine. Because the observed reduction of membrane-associated calcium is apparently not mediated by Ca2+,Mg2(+)-ATPase in this case, other aspects of the calcium regulating system of ameloblasts are apparently targeted by colchicine.


2019 ◽  
Vol 2 (1) ◽  
pp. 9 ◽  
Author(s):  
Markus Peurla ◽  
Pekka Hänninen ◽  
Eeva-Liisa Eskelinen

Preparing pioloform/formvar support films on transmission electron microscopy (TEM) grids is a routine laboratory procedure in practically all electron microscopy units. In current practice, these grids are manually placed on the support film one by one using special tweezers, a process requiring a steady hand. The work is often ergonomically awkward to continue for a longer period of time. In this article, we describe a low-cost, computer vision-guided robot arm that automatically places the grids on the film. The success rate of the prototype robot is 90%, which is comparable to an experienced laboratory technician.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2060
Author(s):  
Alejandro Roche ◽  
Luis Oriol ◽  
Rosa M. Tejedor ◽  
Milagros Piñol

Most of reported polymeric light-responsive nanocarriers make use of UV light to trigger morphological changes and the subsequent release of encapsulated cargoes. Moving from UV- to visible-responsive units is interesting for the potential biomedical applications of these materials. Herein we report the synthesis by ring opening polymerization (ROP) of a series of amphiphilic diblock copolymers, into which either UV or visible responsive azobenzenes have been introduced via copper(I) catalyzed azide-alkyne cycloaddition (CuAAC). These copolymers are able to self-assemble into spherical micelles or vesicles when dispersed in water. The study of the response of the self-assemblies upon UV (365 nm) or visible (530 or 625 nm) light irradiation has been studied by Transmission Electron Microscopy (TEM), Cryogenic Transmission Electron Microscopy (Cryo-TEM), and Dynamic Light Scattering (DLS) studies. Encapsulation of Nile Red, in micelles and vesicles, and Rhodamine B, in vesicles, and its light-stimulated release has been studied by fluorescence spectroscopy and confocal microscopy. Appreciable morphological changes have been induced with green light, and the subsequent release of encapsulated cargoes upon green light irradiation has been confirmed.


2011 ◽  
Vol 306-307 ◽  
pp. 1257-1261 ◽  
Author(s):  
Yun Shan Bai ◽  
Lu De Lu ◽  
Jian Chun Bao

Nanocrystalline Fe3+-doped La2Zr2O7 series solid solutions were prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results showed the La ion can be partially replaced by Fe ion. The partial substituted products were still single-phase solid solutions and the crystal form remained unchanged. TEM images reveal that the products are composed of well-dispersed square-shaped nanocrystals. The method provides a convenient and low-cost route for the synthesis of nanostructures of oxide materials. The fluorescence of La1.8Fe0.2Zr2O7 nanocrystals was evaluated by the UV-visible absorption spectra and the fluorescence spectra. The results indicate that (LaxFe1-x)2Zr2O7 nanocrystals prepared by this method are a kind of potential fluorescent-emitted material.


1993 ◽  
Vol 8 (11) ◽  
pp. 2942-2947 ◽  
Author(s):  
Sadaatsu Yamaguchi ◽  
Masaki Tsuji

Fine granules of poly(tetrafluoroethylene) (PTFE) were heat-treated/annealed on NaCl near its melting temperature (Tm) and/or at a temperature (Tc) between upper and lower feet of the exothermic peak in the DSC cooling process from Tm. Morphological changes of the granules were examined in the bright- and dark-field modes by transmission electron microscopy. When the granules were heat-treated near Tm, microfibrils of 20–30 nm in width and fibrils of 70–120 nm in width came out of the granules. The microfibrils were also observed in the fibrils. The microfibrils formed by heat treatment near Tm seemed to be identified as microfibrils of 20–30 nm in width which were recognized outside the granules annealed at Tc. It is expected that such a microfibril will grow to be a band in the band structure observed on the surface of bulk PTFE. Since the 0015 dark-field images showed that the PTFE chains in such microfibrils and fibrils are set perpendicular to their fibril axis, the chains should fold back and forth repeatedly at both lateral side-surfaces of the microfibrils and fibrils.


2019 ◽  
Vol 95 (10) ◽  
pp. 977-979
Author(s):  
Svetlana G. Yashchenko ◽  
S. Yu. Rybalko

Pineal gland is one of the most important components of homeostasis - the supporting system of the body. It participates in the launch of stress responses, restriction of their development, prevention of adverse effects on the body. There was proved an impact of electromagnetic radiation on the epiphysis. However, morphological changes in the epiphysis under exposure to electromagnetic radiation of modern communication devices are studied not sufficiently. For the time present the population is daily exposed to electromagnetic radiation, including local irradiation on the brain. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. These date determined the task of this research - the study of the structure of rat pineal gland under the exposure to electromagnetic radiation from personal computers and mobile phones. Performed transmission electron microscopy revealed signs of degeneration of dark and light pinealocytes. These signs were manifested in the development of a complex of general and specific morphological changes. There was revealed the appearance of signs of aging and depletion transmission electron microscopy both in light and dark pinealocytes. These signs were manifested in the accumulation of lipofuscin granules and electron-dense "brain sand", the disappearance of nucleoli, cytoplasm vacuolization and mitochondrial cristae enlightenment.


2008 ◽  
Vol 71 (10) ◽  
pp. 2105-2109 ◽  
Author(s):  
T. SIVAROOBAN ◽  
N. S. HETTIARACHCHY ◽  
M. G. JOHNSON

The objective of this study was to use transmission electron microscopy to investigate the morphological changes that occurred in Listeria monocytogenes cells treated with grape seed extract (GSE), green tea extract (GTE), nisin, and combinations of nisin with either GSE or GTE. The test solutions were prepared with (i) 1% GSE, 1% GTE, 6,400 IU of nisin, and the combination of these dilutions with nisin or with (ii) the pure major phenolic constituents of GSE (0.02% epicatechin plus 0.02% catechin) or GTE (0.02% epicatechin plus 0.02% caffeic acid) and their combinations with 6,400 IU of nisin in tryptic soy broth with 0.6% yeast extract (TSBYE). Test solutions were inoculated with L. monocytogenes at approximately 106 CFU/ml and incubated for 3 or 24 h at 37°C. After 3 h of incubation, cells were harvested and evaluated under a transmission electron microscope (JEOL-100 CX) operating at 80 kV (50,000×). Microscopic examination revealed an altered cell membrane and condensed cytoplasm when L. monocytogenes cells were exposed to a combination of nisin with either GSE or GTE or to pure compounds of the major phenolic constituents in combination. After 24 h of incubation at 37°C, the combinations of nisin with GSE and nisin with GTE reduced the L. monocytogenes population to undetectable levels and 3.7 log CFU/ml, respectively. These observations indicate that the combination of nisin with either GSE or GTE had a synergistic effect, and the combinations of nisin with the major phenolic constituents were most likely associated with the L. monocytogenes cell damage during inactivation in TSBYE at 37°C.


Sign in / Sign up

Export Citation Format

Share Document