scholarly journals Chaotic Genetic Algorithm based on Lorenz Chaotic System for Optimization Problems

Author(s):  
Reza Ebrahimzadeh ◽  
Mahdi Jampour
2020 ◽  
Vol 32 ◽  
pp. 03009
Author(s):  
Vishwanath Chikkareddi ◽  
Anurag Ghosh ◽  
Preksha Jagtap ◽  
Sahil Joshi ◽  
Jeel Kanzaria

One of the important application of image encryption is storing confidential and important images on a local device or a database in such a way that only the authorized party can view or perceive it. The current image encryption technique employs the genetic algorithm to increase confusion in the image, but compromises in time and space complexity. The other method employs chaos or pseudo random number generating systems which have fast and highly sensitive keys but fails to make the image sufficiently noisy and is risky due to its deterministic nature. We propose a technique which employs the non-deterministic, optimizing power of genetic algorithm and the space efficiency and key sensitivity of chaotic systems into a unified, efficient algorithm which will retain the merits of both the methods whereas tries to minimize their demerits in a software system. The encryption process proceeds in two steps, generating two keys. First, an encryption sequence is generated using Lorenz Chaotic system of differential equation. The seed values used are the user’s actual key having key sensitivity of 10-14. Second, the encrypted image’s genetic encryption sequence is generated which will result in an encrypted image with entropy value greater than 7.999 thus ensuring the image is very noisy. Proposed technique uses variations of Lorenz system seed sets to generate all random mutations and candidate solutions in Genetic encryption. Since only the seed sets leading to desired solution is stored, space efficiency is higher compared to storing the entire sequences. Using this image encryption technique we will ensure that the images are hidden securely under two layers of security, one chaotic and other non-deterministic.


Author(s):  
Kaixian Gao ◽  
Guohua Yang ◽  
Xiaobo Sun

With the rapid development of the logistics industry, the demand of customer become higher and higher. The timeliness of distribution becomes one of the important factors that directly affect the profit and customer satisfaction of the enterprise. If the distribution route is planned rationally, the cost can be greatly reduced and the customer satisfaction can be improved. Aiming at the routing problem of A company’s vehicle distribution link, we establish mathematical models based on theory and practice. According to the characteristics of the model, genetic algorithm is selected as the algorithm of path optimization. At the same time, we simulate the actual situation of a company, and use genetic algorithm to plan the calculus. By contrast, the genetic algorithm suitable for solving complex optimization problems, the practicability of genetic algorithm in this design is highlighted. It solves the problem of unreasonable transportation of A company, so as to get faster efficiency and lower cost.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 494
Author(s):  
Ekaterina Andriushchenko ◽  
Ants Kallaste ◽  
Anouar Belahcen ◽  
Toomas Vaimann ◽  
Anton Rassõlkin ◽  
...  

In recent decades, the genetic algorithm (GA) has been extensively used in the design optimization of electromagnetic devices. Despite the great merits possessed by the GA, its processing procedure is highly time-consuming. On the contrary, the widely applied Taguchi optimization method is faster with comparable effectiveness in certain optimization problems. This study explores the abilities of both methods within the optimization of a permanent magnet coupling, where the optimization objectives are the minimization of coupling volume and maximization of transmitted torque. The optimal geometry of the coupling and the obtained characteristics achieved by both methods are nearly identical. The magnetic torque density is enhanced by more than 20%, while the volume is reduced by 17%. Yet, the Taguchi method is found to be more time-efficient and effective within the considered optimization problem. Thanks to the additive manufacturing techniques, the initial design and the sophisticated geometry of the Taguchi optimal designs are precisely fabricated. The performances of the coupling designs are validated using an experimental setup.


2021 ◽  
Vol 26 (2) ◽  
pp. 27
Author(s):  
Alejandro Castellanos-Alvarez ◽  
Laura Cruz-Reyes ◽  
Eduardo Fernandez ◽  
Nelson Rangel-Valdez ◽  
Claudia Gómez-Santillán ◽  
...  

Most real-world problems require the optimization of multiple objective functions simultaneously, which can conflict with each other. The environment of these problems usually involves imprecise information derived from inaccurate measurements or the variability in decision-makers’ (DMs’) judgments and beliefs, which can lead to unsatisfactory solutions. The imperfect knowledge can be present either in objective functions, restrictions, or decision-maker’s preferences. These optimization problems have been solved using various techniques such as multi-objective evolutionary algorithms (MOEAs). This paper proposes a new MOEA called NSGA-III-P (non-nominated sorting genetic algorithm III with preferences). The main characteristic of NSGA-III-P is an ordinal multi-criteria classification method for preference integration to guide the algorithm to the region of interest given by the decision-maker’s preferences. Besides, the use of interval analysis allows the expression of preferences with imprecision. The experiments contrasted several versions of the proposed method with the original NSGA-III to analyze different selective pressure induced by the DM’s preferences. In these experiments, the algorithms solved three-objectives instances of the DTLZ problem. The obtained results showed a better approximation to the region of interest for a DM when its preferences are considered.


2011 ◽  
Vol 141 ◽  
pp. 92-97
Author(s):  
Miao Hu ◽  
Tai Yong Wang ◽  
Bo Geng ◽  
Qi Chen Wang ◽  
Dian Peng Li

Nonlinear least square is one of the unconstrained optimization problems. In order to solve the least square trust region sub-problem, a genetic algorithm (GA) of global convergence was applied, and the premature convergence of genetic algorithms was also overcome through optimizing the search range of GA with trust region method (TRM), and the convergence rate of genetic algorithm was increased by the randomness of the genetic search. Finally, an example of banana function was established to verify the GA, and the results show the practicability and precision of this algorithm.


2009 ◽  
Vol 26 (04) ◽  
pp. 479-502 ◽  
Author(s):  
BIN LIU ◽  
TEQI DUAN ◽  
YONGMING LI

In this paper, a novel genetic algorithm — dynamic ring-like agent genetic algorithm (RAGA) is proposed for solving global numerical optimization problem. The RAGA combines the ring-like agent structure and dynamic neighboring genetic operators together to get better optimization capability. An agent in ring-like agent structure represents a candidate solution to the optimization problem. Any agent interacts with neighboring agents to evolve. With dynamic neighboring genetic operators, they compete and cooperate with their neighbors, and they can also use knowledge to increase energies. Global numerical optimization problems are the most important ones to verify the performance of evolutionary algorithm, especially of genetic algorithm and are mostly of interest to the corresponding researchers. In the corresponding experiments, several complex benchmark functions were used for optimization, several popular GAs were used for comparison. In order to better compare two agents GAs (MAGA: multi-agent genetic algorithm and RAGA), the several dimensional experiments (from low dimension to high dimension) were done. These experimental results show that RAGA not only is suitable for optimization problems, but also has more precise and more stable optimization results.


Author(s):  
Mostafa Elshahed ◽  
Mahmoud Dawod ◽  
Zeinab H. Osman

Integrating Distributed Generation (DG) units into distribution systems can have an impact on the voltage profile, power flow, power losses, and voltage stability. In this paper, a new methodology for DG location and sizing are developed to minimize system losses and maximize voltage stability index (VSI). A proper allocation of DG has to be determined using the fuzzy ranking method to verify best compromised solutions and achieve maximum benefits. Synchronous machines are utilized and its power factor is optimally determined via genetic optimization to inject reactive power to decrease system losses and improve voltage profile and VSI. The Augmented Lagrangian Genetic Algorithm with nonlinear mixed-integer variables and Non-dominated Sorting Genetic Algorithm have been implemented to solve both single/multi-objective function optimization problems. For proposed methodology effectiveness verification, it is tested on 33-bus and 69-bus radial distribution systems then compared with previous works.


2017 ◽  
Vol 4 (2) ◽  
pp. 158-167 ◽  
Author(s):  
Ruholla Jafari-Marandi ◽  
Brian K. Smith

Abstract Genetic Algorithm (GA) has been one of the most popular methods for many challenging optimization problems when exact approaches are too computationally expensive. A review of the literature shows extensive research attempting to adapt and develop the standard GA. Nevertheless, the essence of GA which consists of concepts such as chromosomes, individuals, crossover, mutation, and others rarely has been the focus of recent researchers. In this paper method, Fluid Genetic Algorithm (FGA), some of these concepts are changed, removed, and furthermore, new concepts are introduced. The performance of GA and FGA are compared through seven benchmark functions. FGA not only shows a better success rate and better convergence control, but it can be applied to a wider range of problems including multi-objective and multi-level problems. Also, the application of FGA for a real engineering problem, Quadric Assignment Problem (AQP), is shown and experienced. Highlights This work presents a novel Genetic Algorithm alteration. Chromosome concept and structure in FGA is more similar to the real genetic world. FGA comprises global and individual learning rates. We show FGA enjoys higher success rate, and better convergence control.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
An Liu ◽  
Erwie Zahara ◽  
Ming-Ta Yang

Ordinary differential equations usefully describe the behavior of a wide range of dynamic physical systems. The particle swarm optimization (PSO) method has been considered an effective tool for solving the engineering optimization problems for ordinary differential equations. This paper proposes a modified hybrid Nelder-Mead simplex search and particle swarm optimization (M-NM-PSO) method for solving parameter estimation problems. The M-NM-PSO method improves the efficiency of the PSO method and the conventional NM-PSO method by rapid convergence and better objective function value. Studies are made for three well-known cases, and the solutions of the M-NM-PSO method are compared with those by other methods published in the literature. The results demonstrate that the proposed M-NM-PSO method yields better estimation results than those obtained by the genetic algorithm, the modified genetic algorithm (real-coded GA (RCGA)), the conventional particle swarm optimization (PSO) method, and the conventional NM-PSO method.


Sign in / Sign up

Export Citation Format

Share Document