scholarly journals Liquid Biopsy in Breast Cancer: A Focused Review

Author(s):  
Timothy Kwang Yong Tay ◽  
Puay Hoon Tan

Context.— The role of liquid biopsy in cancer management has been gaining increased prominence in the past decade, with well-defined clinical applications now being established in lung cancer. Recently, the US Food and Drug Administration also approved the Therascreen PIK3CA RGQ polymerase chain reaction assay as a companion diagnostic assay to detect PIK3CA mutations in breast cancer for both tissue and liquid biopsies, bringing the role of liquid biopsy in breast cancer management to the fore. Its utility in other aspects of breast cancer, however, is yet to be clearly defined. Objective.— To review the studies that looked at liquid biopsies in breast cancer and examine their potential for clinical application in the areas of early diagnosis, prognostication, monitoring disease response, detecting minimal residual disease, and predicting risk of progression or relapse. We focus mainly on circulating tumor cells and circulating tumor DNA. Data sources.— Peer-reviewed articles in PubMed. Conclusions.— Liquid biopsies in breast cancers have yielded promising results, especially in the areas of monitoring treatment response and predicting disease progression or relapse. With further study, and hopefully coupled with continued improvements in technologies that isolate tumor-derived materials, liquid biopsies may go on to play a greater role in the breast cancer clinic.

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3443
Author(s):  
Ayanthi A. Wijewardene ◽  
Marthe Chehade ◽  
Matti L. Gild ◽  
Roderick J. Clifton-Bligh ◽  
Martyn Bullock

Liquid biopsies are a novel technique to assess for either circulating tumor cells (CTC) or circulating tumor DNA (ctDNA and microRNA (miRNA)) in peripheral blood samples of cancer patients. The diagnostic role of liquid biopsy in oncology has expanded in recent years, particularly in lung, colorectal and breast cancer. In thyroid cancer, the role of liquid biopsy in either diagnosis or prognosis is beginning to translate from the lab to the clinic. In this review, we describe the evolution of liquid biopsies in detecting CTC, ctDNA and miRNA in thyroid cancer patients, together with its limitations and future directions in clinical practice.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2078
Author(s):  
Miho Ogawa ◽  
Kazuaki Yokoyama ◽  
Seiya Imoto ◽  
Arinobu Tojo

With the recent advances in noninvasive approaches for cancer diagnosis and surveillance, the term “liquid biopsy” has become more familiar to clinicians, including hematologists. Liquid biopsy provides a variety of clinically useful genetic data. In this era of personalized medicine, genetic information is critical to early diagnosis, aiding risk stratification, directing therapeutic options, and monitoring disease relapse. The validity of circulating tumor DNA (ctDNA)-mediated liquid biopsies has received increasing attention. This review summarizes the current knowledge of liquid biopsy ctDNA in hematological malignancies, focusing on the feasibility, limitations, and key areas of clinical application. We also highlight recent advances in the minimal residual disease monitoring of leukemia using ctDNA. This article will be useful to those involved in the clinical practice of hematopoietic oncology.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2101
Author(s):  
Ângela Carvalho ◽  
Gabriela Ferreira ◽  
Duarte Seixas ◽  
Catarina Guimarães-Teixeira ◽  
Rui Henrique ◽  
...  

Despite the intensive efforts dedicated to cancer diagnosis and treatment, lung cancer (LCa) remains the leading cause of cancer-related mortality, worldwide. The poor survival rate among lung cancer patients commonly results from diagnosis at late-stage, limitations in characterizing tumor heterogeneity and the lack of non-invasive tools for detection of residual disease and early recurrence. Henceforth, research on liquid biopsies has been increasingly devoted to overcoming these major limitations and improving management of LCa patients. Liquid biopsy is an emerging field that has evolved significantly in recent years due its minimally invasive nature and potential to assess various disease biomarkers. Several strategies for characterization of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have been developed. With the aim of standardizing diagnostic and follow-up practices, microfluidic devices have been introduced to improve biomarkers isolation efficiency and specificity. Nonetheless, implementation of lab-on-a-chip platforms in clinical practice may face some challenges, considering its recent application to liquid biopsies. In this review, recent advances and strategies for the use of liquid biopsies in LCa management are discussed, focusing on high-throughput microfluidic devices applied for CTCs and ctDNA isolation and detection, current clinical validation studies and potential clinical utility.


Author(s):  
Annarita Perillo ◽  
Mohamed Vincenzo Agbaje Olufemi ◽  
Jacopo De Robbio ◽  
Rossella Margherita Mancuso ◽  
Anna Roscigno ◽  
...  

Lung cancer is the most common cancer and the leading cause of cancer mortality worldwide. To date, tissue biopsy has been the gold standard for the diagnosis and the identification of specific molecular mutations, to guide choice of therapy. However, this procedure has several limitations. Liquid biopsy could represent a solution to the intrinsic limits of traditional biopsy. It can detect cancer markers such as circulating tumor DNA or RNA (ctDNA, ctRNA), and circulating tumor cells, in plasma, serum or other biological fluids. This procedure is minimally invasive, reproducible and can be used repeatedly. The main clinical applications of liquid biopsy in non-small cell lung cancer (NSCLC) patients are the early diagnosis, stratification of the risk of relapse, identification of mutations to guide application of targeted therapy and the evaluation of the minimum residual disease. In this review, the current role of liquid biopsy and associated markers in the management of NSCLC patients was analyzed, with emphasis on ctDNA and CTCs, and radiotherapy.


2020 ◽  
Vol 21 (24) ◽  
pp. 9457
Author(s):  
Marta Tellez-Gabriel ◽  
Erik Knutsen ◽  
Maria Perander

Breast cancer is the most common cancer among women worldwide. Although the five-, ten- and fifteen-year survival rates are good for breast cancer patients diagnosed with early-stage disease, some cancers recur many years after completion of primary therapy. Tumor heterogeneity and clonal evolution may lead to distant metastasis and therapy resistance, which are the main causes of breast cancer-associated deaths. In the clinic today, imaging techniques like mammography and tissue biopsies are used to diagnose breast cancer. Even though these methods are important in primary diagnosis, they have limitations when it comes to longitudinal monitoring of residual disease after treatment, disease progression, therapy responses, and disease recurrence. Over the last few years, there has been an increasing interest in the diagnostic, prognostic, and predictive potential of circulating cancer-derived material acquired through liquid biopsies in breast cancer. Thanks to the development of sensitive devices and platforms, a variety of tumor-derived material, including circulating cancer cells (CTCs), circulating DNA (ctDNA), and biomolecules encapsulated in extracellular vesicles, can now be extracted and analyzed from body fluids. Here we will review the most recent studies on breast cancer, demonstrating the clinical potential and utility of CTCs and ctDNA. We will also review literature illustrating the potential of circulating exosomal RNA and proteins as future biomarkers in breast cancer. Finally, we will discuss some of the advantages and limitations of liquid biopsies and the future perspectives of this field in breast cancer management.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Chi-Ju Kim ◽  
Liang Dong ◽  
Sarah Amend ◽  
Yoon-Kyoung Cho ◽  
Kenneth Pienta

Liquid biopsy has emerged as a complement to invasive tissue biopsy to guide cancer diagnosis and treatment. The common liquid biopsy biomarkers are circulating tumor cells (CTCs), extracellular vesicles (EVs),...


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1861
Author(s):  
Oddmund Nordgård ◽  
Rakel Brendsdal Forthun ◽  
Morten Lapin ◽  
Bjørn Henning Grønberg ◽  
Karl Henning Kalland ◽  
...  

Liquid biopsies have emerged as a potential new diagnostic tool, providing detailed information relevant for characterization and treatment of solid cancers. We here present an overview of current evidence supporting the clinical relevance of liquid biopsy assessments. We also discuss the implementation of liquid biopsies in clinical studies and their current and future clinical role, with a special reference to the Nordic healthcare systems. Our considerations are restricted to the most established liquid biopsy specimens: circulating tumor DNA (ctDNA) and circulating tumor cells (CTC). Both ctDNA and CTCs have been used for prognostic stratification, treatment choices, and treatment monitoring in solid cancers. Several recent publications also support the role of ctDNA in early cancer detection. ctDNA seems to provide more robust clinically relevant information in general, whereas CTCs have the potential to answer more basic questions related to cancer biology and metastasis. Epidermal growth factor receptor-directed treatment of non-small-cell lung cancer represents a clinical setting where ctDNA already has entered the clinic. The role of liquid biopsies in treatment decisions, standardization of methods, diagnostic performance and the need for further research, as well as cost and regulatory issues were identified as factors that influence further integration in the clinic. In conclusion, substantial evidence supports the clinical utility of liquid biopsies in cancer diagnostics, but further research is still required for a more general application in clinical practice.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3813
Author(s):  
Mira Shoukry ◽  
Sacha Broccard ◽  
Jamie Kaplan ◽  
Emmanuel Gabriel

With the incidence of breast cancer steadily rising, it is important to explore novel technologies that can allow for earlier detection of disease as well more a personalized and effective treatment approach. The concept of “liquid biopsies” and the data they provide have been increasingly studied in the recent decades. More specifically, circulating tumor DNA (ctDNA) has emerged as a potential biomarker for various cancers, including breast cancer. While methods such as mammography and tissue biopsies are the current standards for the detection and surveillance of breast cancer, ctDNA analysis has shown some promise. This review discusses the versatility of ctDNA by exploring its multiple emerging uses for the management of breast cancer. Its efficacy is also compared to current biomarkers and technologies.


Sign in / Sign up

Export Citation Format

Share Document