scholarly journals Daptomycin Pharmacokinetics in Adolescents Undergoing Hemodialysis and Peritoneal Dialysis: A Case Series With Pharmacokinetic Modeling

2021 ◽  
Vol 26 (2) ◽  
pp. 123-132
Author(s):  
Sin Yin Lim ◽  
Teresa Lewis ◽  
Sukyung Woo ◽  
Martin Turman ◽  
David W. A. Bourne ◽  
...  

BACKGROUND Children who undergo hemodialysis (HD) and peritoneal dialysis are at increased risk of infection. Daptomcyin is used to treat resistant infections; however, the pharmacokinetics of daptomycin in pediatric and adolescent dialysis patients remain unknown. METHODS We report the safety and pharmacokinetics of a single intravenous 5 mg/kg dose of daptomycin for 6 individuals age 12 to 17 years old who underwent HD or continuous cycling peritoneal dialysis (CCPD). Daptomycin concentrations from all samples were determined by high-performance liquid chromatography. A non-compartmental analysis was performed to compare the pharmacokinetic parameters among HD and CCPD patients. A population pharmacokinetic model was developed to describe the concentration-time profiles of daptomycin in plasma, urine, and dialysis effluent. Monte Carlo simulations were performed to assess the pharmacodynamic outcomes. RESULTS All subjects tolerated the single dose of daptomycin. During HD, significant drug removal was observed, compared with CCPD (26% vs 5% of total dose). A low daptomycin renal clearance (<12% of total clearance) with moderate variability (40.5%) was observed among subjects with residual renal function. An anuric and obese subject who received CCPD treatment appeared to have >80% higher daptomycin area under the plasma concentration-time curve than the other CCPD subjects. Dosing regimens that achieved predefined pharmacodynamic targets were reported. CONCLUSIONS Daptomycin clearance was faster in 12- to 17-year-old patients receiving HD than CCPD. Administration of daptomycin immediately after HD reduces drug loss. The CCPD treatment, anuria, and obesity may increase the risk for drug accumulation. Our pharmacokinetic model can be further used to optimize dosing regimens of daptomycin in this population.

2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 191-191
Author(s):  
Paolo Abada ◽  
Yiu-Keung Lau ◽  
Ran Wei ◽  
Lisa O’Brien ◽  
Amanda Long ◽  
...  

191 Background: Ramucirumab is a human recombinant immunoglobin G1 monoclonal antibody (mAb) antagonist of vascular endothelial growth factor receptor-2. Ramucirumab dosed at 8 mg/kg every 2 weeks or 10 mg/kg every 3 weeks, either as monotherapy or in combination with chemotherapy, was initially studied with as an intravenous infusion over 60 minutes following premedication with a histamine-1 receptor antagonist. Lengthy intravenous infusions are inconvenient for patients and increase the workloads of nursing and administrative staff. Shortening the infusion duration of ramucirumab could therefore benefit both patients and healthcare professionals. The current analysis determined the impact such a change could have on the pharmacokinetic (PK) profile of ramucirumab. Additionally, the relationship between infusion rate and incidence of immediate infusion-related reactions (IRRs; occurring on the day of administration), common adverse events associated with mAb infusions, was assessed. Methods: A population pharmacokinetic model was established using concentration–time data collected from 2522 patients who received one of five different ramucirumab regimens involving an intravenous infusion over ~60 minutes in 17 clinical studies. The final PK model was used to simulate concentration–time profiles and exposure parameters following ramucirumab infusion durations of 30 vs 60 min. Phase II/III clinical study data from patients receiving ramucirumab were pooled to assess the association between ramucirumab infusion rate and incidence of immediate IRRs using multivariate logistic regression analysis. Results: Ramucirumab infusions of 30- and 60-min durations resulted in equivalent concentration–time profiles and, hence, equivalent systemic exposure to ramucirumab. Among 3216 patients receiving ramucirumab in phase II/III studies, 254 (7.9%) had at least one immediate any-grade IRR; 17 (0.5%) experienced grade ≥3 immediate IRRs. The incidence of immediate IRRs (any grade or grade ≥3) was similar across infusion rate quartiles. Under multivariate logistic analysis, infusion rate was not significantly associated with an increased risk of an immediate IRR (odds ratio per 1 mg/min increase 1.014, 95% confidence interval 0.999, 1.030; p=0.071). Conclusions: Administering ramucirumab using different infusion durations (30 vs 60 min) did not affect ramucirumab exposure. Analysis of clinical study data showed a faster infusion rate was not associated with an increased risk of immediate IRRs. It is considered unlikely that shortening the infusion duration of ramucirumab will impact its clinical efficacy or overall safety profile, and is now an option for administration in the U.S.


2012 ◽  
Vol 116 (5) ◽  
pp. 1124-1133 ◽  
Author(s):  
Bruce Hullett ◽  
Sam Salman ◽  
Sean J. O'Halloran ◽  
Deborah Peirce ◽  
Kylie Davies ◽  
...  

Background Parecoxib is a cyclooxygenase-2 selective inhibitor used in management of postoperative pain in adults. This study aimed to provide pediatric pharmacokinetic information for parecoxib and its active metabolite valdecoxib. Methods Thirty-eight children undergoing surgery received parecoxib (1 mg/kg IV to a maximum of 40 mg) at induction of anesthesia, and plasma samples were collected for drug measurement. Population pharmacokinetic parameters were estimated using nonlinear mixed effects modeling. Area under the valdecoxib concentration-time curve and time above cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib were simulated. Results A three-compartment model best represented parecoxib disposition, whereas one compartment was adequate for valdecoxib. Age was linearly correlated with parecoxib clearance (5.0% increase/yr). There was a sigmoid relationship between age and both valdecoxib clearance and distribution volume. Time to 50% maturation was 87 weeks postmenstrual age for both. In simulations using allometric-based doses the 90% prediction interval of valdecoxib concentration-time curve in children 2-12.7 yr included the mean for adults given 40 mg parecoxib IV. Simulated free valdecoxib plasma concentration remained above the in vitro 50% inhibitory concentrations for more than 12 h. In children younger than 2 yr, a dose reduction is likely required due to ongoing metabolic maturation. Conclusions The final pharmacokinetic model gave a robust representation of parecoxib and valdecoxib disposition. Area under the valdecoxib concentration-time curve was similar to that in adults (40 mg), and simulated free valdecoxib concentration was above the cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib for at least 12 h.


2007 ◽  
Vol 51 (12) ◽  
pp. 4351-4355 ◽  
Author(s):  
Paul G. Ambrose ◽  
Alan Forrest ◽  
William A. Craig ◽  
Chistopher M. Rubino ◽  
Sujata M. Bhavnani ◽  
...  

ABSTRACT We determined the pharmacokinetic-pharmacodynamic (PK-PD) measure most predictive of gatifloxacin efficacy and the magnitude of this measure necessary for survival in a murine Bacillus anthracis inhalation infection model. We then used population pharmacokinetic models for gatifloxacin and simulation to identify dosing regimens with high probabilities of attaining exposures likely to be efficacious in adults and children. In this work, 6- to 8-week-old nonneutropenic female BALB/c mice received aerosol challenges of 50 to 75 50% lethal doses of B. anthracis (Ames strain, for which the gatifloxacin MIC is 0.125 mg/liter). Gatifloxacin was administered at 6- or 8-h intervals beginning 24 h postchallenge for 21 days, and dosing was designed to produce profiles mimicking fractionated concentration-time profiles for humans. Mice were evaluated daily for survival. Hill-type models were fitted to survival data. To identify potentially effective dosing regimens, adult and pediatric population pharmacokinetic models for gatifloxacin and Monte Carlo simulation were used to generate 5,000 individual patient exposure estimates. The ratio of the area under the concentration-time curve from 0 to 24 h (AUC0-24) to the MIC of the drug for the organism (AUC0-24/MIC ratio) was the PK-PD measure most predictive of survival (R 2 = 0.96). The 50% effective dose (ED50) and the ED90 and ED99 corresponded to AUC0-24/MIC ratios of 11.5, 15.8, and 30, respectively, where the maximum effect was 97% survival. Simulation results indicate that a daily gatifloxacin dose of 400 mg for adults and 10 mg/kg of body weight for children gives a 100% probability of attaining the PK-PD target (ED99). Sensitivity analyses suggest that the probability of PK-PD target attainment in adults and children is not affected by increases in MICs for strains of B. anthracis to levels as high as 0.5 mg/liter.


Antibiotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 113 ◽  
Author(s):  
Noriyuki Ishihara ◽  
Nobuhiro Nishimura ◽  
Kazuro Ikawa ◽  
Fumi Karino ◽  
Kiyotaka Miura ◽  
...  

The aim of this study was to develop a population pharmacokinetic model for piperacillin (PIPC)/tazobactam (TAZ) in late elderly patients with pneumonia and to optimize the administration planning by applying pharmacokinetic/pharmacodynamic (PK/PD) criteria. PIPC/TAZ (total dose of 2.25 or 4.5 g) was infused intravenously three times daily to Japanese patients over 75 years old. The plasma concentrations of PIPC and TAZ were determined using high-performance liquid chromatography and modeled using the NONMEM program. PK/PD analysis with a random simulation was conducted using the final population PK model to estimate the probability of target attainment (PTA) profiles for various PIPC/TAZ-regimen–minimum-inhibitory-concentration (MIC) combinations. The PTAs for PIPC and TAZ were determined as the fraction that achieved at least 50% free time > MIC and area under the free-plasma-concentration–time curve over 24 h ≥ 96 μg h/mL, respectively. A total of 18 cases, the mean age of which was 86.5 ± 6.0 (75–101) years, were investigated. The plasma-concentration–time profiles of PIPC and TAZ were characterized by a two-compartment model. The parameter estimates for the final model, namely the total clearance, central distribution volume, peripheral distribution volume, and intercompartmental clearance, were 4.58 + 0.061 × (CLcr − 37.4) L/h, 5.39 L, 6.96 L, and 20.7 L/h for PIPC, and 5.00 + 0.059 × (CLcr − 37.4) L/h, 6.29 L, 7.73 L, and 24.0 L/h for TAZ, respectively, where CLcr is the creatinine clearance. PK/PD analysis using the final model showed that in drug-resistant strains with a MIC > 8 μg/mL, 4.5 g of PIPC/TAZ every 6 h was required, even for the patients with a CLcr of 50–60 mL/min. The population PK model developed in this study, together with MIC value, can be useful for optimizing the PIPC/TAZ dosage in the over-75-year-old patients, when they are administered PIPC/TAZ. Therefore, the findings of present study may contribute to improving the efficacy and safety of the administration of PIPC/TAZ therapy in late elderly patients with pneumonia.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 754
Author(s):  
Seung-Hyun Jeong ◽  
Ji-Hun Jang ◽  
Hea-Young Cho ◽  
Yong-Bok Lee

The aims of this study were: (1) to perform population pharmacokinetic analysis of cefaclor in healthy Korean subjects, and (2) to investigate possible effects of various covariates on pharmacokinetic parameters of cefaclor. Although cefaclor belongs to the cephalosporin family antibiotic that has been used in various indications, there have been very few population studies on factors affecting its pharmacokinetics. Therefore, this study is very important in that effective therapy could be possible through a population pharmacokinetic study that explores effective covariates related to cefaclor pharmacokinetic diversity between individuals. Pharmacokinetic results of 48 subjects with physical and biochemical parameters were used for the population pharmacokinetic analysis of cefaclor. A one-compartment with lag-time and first-order absorption/elimination was constructed as a base model and extended to include covariates that could influence between-subject variability. Creatinine clearance and body weight significantly influenced systemic clearance and distribution volume of cefaclor. Cefaclor’s final population pharmacokinetic model was validated and some of the population’s pharmacokinetic diversity could be explained. Herein, we first describe the establishment of a population pharmacokinetic model of cefaclor for healthy Koreans that might be useful for customizing cefaclor or exploring additional covariates in patients.


2002 ◽  
Vol 20 (19) ◽  
pp. 4065-4073 ◽  
Author(s):  
Ch. van Kesteren ◽  
R. A.A. Mathôt ◽  
E. Raymond ◽  
J. P. Armand ◽  
Ch. Dittrich ◽  
...  

PURPOSE: N-(3-Chloro-7-indolyl)-1,4-benzenedisulfonamide (E7070) is a novel sulfonamide anticancer agent currently in phase II clinical development for the treatment of solid tumors. Four phase I studies have been finalized, with E7070 administered at four different treatment schedules to identify the maximum-tolerated dose and the dose-limiting toxicities. Pharmacokinetic analyses of all studies revealed E7070 to have nonlinear pharmacokinetics. A population pharmacokinetic model was designed and validated to describe the pharmacokinetics of E7070 at all four treatment schedules and to identify the possible influences of patient characteristics on the pharmacokinetic parameters. PATIENTS AND METHODS: Plasma concentration-time data of all patients (n = 143) were fitted to several pharmacokinetic models using NONMEM. Seventeen covariables were investigated for their relation with individual pharmacokinetic parameters. A bootstrap procedure was performed to check the validity of the model. RESULTS: The data were best described using a three-compartment model with nonlinear distribution to a peripheral compartment and two parallel pathways of elimination from the central compartment: a linear and a saturable pathway. Body-surface area (BSA) was significantly correlated to both the volume of distribution of the central compartment and to the maximal elimination capacity. The fits of 500 bootstrap replicates of the data set demonstrated the robustness of the developed population pharmacokinetic model. CONCLUSION: A population pharmacokinetic model has been designed and validated that accurately describes the data of four phase I studies with E7070. Furthermore, it has been demonstrated that BSA-guided dosing for E7070 is important.


2017 ◽  
Vol 28 (1) ◽  
pp. 85-92
Author(s):  
Christoph P. Hornik ◽  
Nikolas J. Onufrak ◽  
P. Brian Smith ◽  
Michael Cohen-Wolkowiez ◽  
Matthew M. Laughon ◽  
...  

AbstractBackgroundThe relationship between sildenafil dosing, exposure, and systemic hypotension in infants is incompletely understood.ObjectivesThe aim of this study was to characterise the relationship between predicted sildenafil exposure and hypotension in hospitalised infants.MethodsWe extracted information on sildenafil dosing and clinical characteristics from electronic health records of 348 neonatal ICUs from 1997 to 2013, and we predicted drug exposure using a population pharmacokinetic model.ResultsWe identified 232 infants receiving sildenafil at a median dose of 3.2 mg/kg/day (2.0, 6.0). The median steady-state area under the concentration–time curve over 24 hours (AUC24,SS) and maximum concentration of sildenafil (Cmax,SS,SIL) were 712 ng×hour/ml (401, 1561) and 129 ng/ml (69, 293), respectively. Systemic hypotension occurred in 9% of the cohort. In multivariable analysis, neither dosing nor exposure were associated with systemic hypotension: odds ratio=0.96 (95% confidence interval: 0.81, 1.14) for sildenafil dose; 0.87 (0.59, 1.28) for AUC24,SS; 1.19 (0.78, 1.82) for Cmax,SS,SIL.ConclusionsWe found no association between sildenafil dosing or exposure with systemic hypotension. Continued assessment of sildenafil’s safety profile in infants is warranted.


2020 ◽  
Vol 25 (6) ◽  
pp. 476-484
Author(s):  
Jennifer T. Pham

Late-onset sepsis in neonates can lead to significant morbidity and mortality, especially in preterm infants. Vancomycin is commonly prescribed for the treatment of Gram-positive organisms, particularly methicillin-resistant Staphylococcus aureus (MRSA), coagulase-negative staphylococci, and ampicillin-resistant Enterococcus species in adult and pediatric patients. Currently, there is no consensus on optimal dosing and monitoring of vancomycin in neonates. Different vancomycin dosing regimens exist for neonates, but with many of these regimens, obtaining therapeutic trough concentrations can be difficult. In 2011, the Infectious Diseases Society of America recommended vancomycin trough concentrations of 15 to 20 mg/L or an AUC/MIC ratio of ≥400 for severe invasive diseases (e.g., MRSA) in adult and pediatric patients. Owing to recent reports of increased risk of nephrotoxicity associated with vancomycin trough concentrations of 15 to 20 mg/L and AUC/MIC of ≥400, a revised consensus guideline, recently published in 2020, no longer recommends monitoring vancomycin trough concentrations in adult patients. The guideline recommends an AUC/MIC of 400 to 600, which has been found to achieve clinical efficacy while reducing nephrotoxicity. However, these recommendations were derived solely from adult literature, as there are limited clinical outcomes data in pediatric and neonatal patients. Furthermore, owing to the variation of vancomycin pharmacokinetic parameters among the neonatal population, these recommendations for achieving vancomycin AUC/MIC of 400 to 600 in neonates require further investigation. This review will discuss the challenges of achieving optimal vancomycin dosing and monitoring in neonatal patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Du ◽  
Yue Zhou ◽  
Bo-Hao Tang ◽  
Yue-E Wu ◽  
Xin-Mei Yang ◽  
...  

Objectives: Augmented renal clearance (ARC) of primarily renally eliminated antibacterial agents may result in subtherapeutic antibiotic concentrations and, as a consequence, worse clinical outcomes. Cefathiamidine is frequently used as empirical antimicrobial therapy in children with ARC, but pharmacokinetic studies in infants are lacking. This population pharmacokinetic study in infants with ARC was conducted to determine optimal dosing regimens of cefathiamidine.Methods: The population pharmacokinetics was conducted in 20 infants treated with cefathiamidine. Plasma samples of cefathiamidine were collected using opportunistic sampling, and the concentrations were detected by UPLC-MS/MS. Data analysis was performed to determine pharmacokinetic parameters and to characterize pharmacokinetic variability of cefathiamidine using nonlinear mixed effects modelling (NONMEM) software program.Results: The data (n = 36) from 20 infants (age range, 0.35–1.86 years) with ARC were fitted best with a 1-compartment model. Allometrically scaled weight and age as significant covariates influenced cefathiamidine pharmacokinetics. The median (range) values of estimated clearance and the volume of distribution were 0.22 (0.09–0.29) L/h/kg and 0.34 (0.24–0.41) L/kg, respectively. Monte Carlo simulations showed that the cefathiamidine doses of 100 mg/kg/day q12 h, 50 mg/kg/day q8 h and 75 mg/kg/day q6 h were chosen for bacteria with MIC 0.25, 0.5 and 2 mg/L, respectively.Conclusion: The population pharmacokinetic model of cefathiamidine for infants with ARC was developed. The PTA - based dosing regimens were recommended based on the final model.


2022 ◽  
Vol 12 ◽  
Author(s):  
SiChan Li ◽  
SanLan Wu ◽  
WeiJing Gong ◽  
Peng Cao ◽  
Xin Chen ◽  
...  

Purpose: The aims of this study were to establish a joint population pharmacokinetic model for voriconazole and its N-oxide metabolite in immunocompromised patients, to determine the extent to which the CYP2C19 genetic polymorphisms influenced the pharmacokinetic parameters, and to evaluate and optimize the dosing regimens using a simulating approach.Methods: A population pharmacokinetic analysis was conducted using the Phoenix NLME software based on 427 plasma concentrations from 78 patients receiving multiple oral doses of voriconazole (200 mg twice daily). The final model was assessed by goodness of fit plots, non-parametric bootstrap method, and visual predictive check. Monte Carlo simulations were carried out to evaluate and optimize the dosing regimens.Results: A one-compartment model with first-order absorption and mixed linear and concentration-dependent-nonlinear elimination fitted well to concentration-time profile of voriconazole, while one-compartment model with first-order elimination well described the disposition of voriconazole N-oxide. Covariate analysis indicated that voriconazole pharmacokinetics was substantially influenced by the CYP2C19 genetic variations. Simulations showed that the recommended maintenance dose regimen would lead to subtherapeutic levels in patients with different CYP2C19 genotypes, and elevated daily doses of voriconazole might be required to attain the therapeutic range.Conclusions: The joint population pharmacokinetic model successfully characterized the pharmacokinetics of voriconazole and its N-oxide metabolite in immunocompromised patients. The proposed maintenance dose regimens could provide a rationale for dosage individualization to improve clinical outcomes and minimize drug-related toxicities.


Sign in / Sign up

Export Citation Format

Share Document