scholarly journals Proxy electrochemical process for Acid humic

2015 ◽  
Vol 37 ◽  
pp. 41
Author(s):  
G. Kashi ◽  
F. Khoshab

Humic substances are produced by the microbial degradation of dead plant matter. The goal of this research is to investigate of humic acid (HA) from urban drinking water by batch proxy electrochemical reactor(PER)with using zinc-copper electrode(distance 2 cm) and hydrogen peroxide. The variables include pH(4-10), concentration of HA(5-15 mg/L), reaction time(7.5-22.5 min), concentration of hydrogen peroxide(40-120 mg/L), and current density(3-9 mA/cm2). In electrochemical reactor, the removal percentage for HA concentration(5 mg/L) in current density 9 mA/cm2 and electrolysis time 15 min in pHs 4, 7, and 10 are obtained 61%, 56%, and 51%, respectively. In electrochemical reactor, the removal percentage for HA concentration (15 mg/L) in current density 9 mA/cm2 and electrolysis time 15min in pHs 4, 7, and 10 are obtained 41%, 36%, and 31%, respectively. In PER, the removal percentage for HA concentration (5 mg/L), in optimum conditions, in hydrogen peroxide concentration 120 mg/L, current density 9 mA/cm2, optimum pH 4, electrolysis time 15 min in HA concentrations 5, 10, and 15 are obtained 100%, 93%, and 83%, respectively. The findings indicate that HA removal efficiency is increased with increasing current density, electrolysis time, and decreasing HA concentration. PER has appropriate efficiency for the HA removal from water.

2021 ◽  
Vol 39 (2A) ◽  
pp. 189-195
Author(s):  
Shaimaa T. Alnasrawy ◽  
Ghayda Y. Alkindi ◽  
Taleb M. Albayati

In this study, the ability of the electrochemical process to remove aqueous high concentration phenol using an electrochemical cell with aluminum anode and cathode was examined. The removal rate of phenol was monitored using different parameters phenol concentration, pH, electrolysis time, current density, and electrode distance. Obtained results indicated that the low removal rates of phenol were observed at both low and high pH. However, the removal rate of phenol increased with an increase in the current density, each electrochemical process conditions need a certain electrodes distance. removal rate of phenol decreased with the increase in the initial phenol concentration. The maximum removal rate of phenol obtained from this study was 82%.


2014 ◽  
Vol 567 ◽  
pp. 44-49 ◽  
Author(s):  
Gan Chin Heng ◽  
Mohamed Hasnain Isa

Electrochemical process is one of the most effective methods to enhance sludge disintegration. In this study, Ti/RuO2 anodes were prepared by Pechini’s method and the electrode surface morphology was characterized by FESEM and EDAX. The effects of various operating conditions were investigated including initial pH value of sludge, sludge concentration, electrolysis time and current density. The study showed that the removal efficiencies of TS, VS, TSS and VSS increased with the increase of pH in the alkaline range, electrolysis time and current density but decreased with the increase of initial sludge concentration. The application of electrochemical process using Ti/RuO2 electrodes enhanced the sludge disintegration for possible subsequent biological treatment.


2017 ◽  
Vol 24 (3) ◽  
pp. 397-404 ◽  
Author(s):  
Asim Yaqub ◽  
Mohamed Hasnain Isa ◽  
Huma Ajab ◽  
Shamsul Rahman Kutty ◽  
Ezerie H. Ezechi

Abstract Produced water is actually the wastewater separated from petroleum crude oil. Electrochemical-oxidation experiments was conducted for degradation of 16 priority polycyclic aromatic hydrocarbons (PAHs) using DSA type Ti/IrO2 anode. Laboratory scale batch reactor was used for degradation studies. To get the maximum PAHs removal electrochemical process optimized on three independent variable current density, pH and electrolysis time. The response surface modelling (RSM) based on a Box-Behnken design was applied to get appropriate experimental design. X1, X2 and X3 are the coded factors of independent variables such as the current density, pH and electrolysis time, respectively. Maximum removal was 95.29% at optimized conditions such as current density of 9 mA/cm2, pH 3 and electrolysis time 3.7 h. Quadratic model was suggested best fit model. The results of the Analysis of Variances (ANOVA) for PAHs demonstrated that the model was highly significant.


Author(s):  
Hariraj Singh ◽  
Brijesh Kumar Mishra ◽  
Aditya Prakash Yadav

The aim of the present work was to investigate the removal of phenol from a synthetic solution by the enhanced electrochemical oxidation process using graphite electrodes. Central composite design (CCD) and Box Behnken Design (BBD) under Response Surface Methodology (RSM) tool were used to investigate the effects of major operating variables viz. Current density (mA/ cm2): (2.27 to 4.54), pH: (5.5 to 7.5) and electrolysis time (min): (30 to 90). The predicted values of BBD responses obtained using RSM were more significant than the CCD model in terms of reaction time, whereas under the desirability test CCD model was found more appropriate in terms of phenol removal and power consumption. The optimal result shows that the CCD model predicted and experimental values of phenol removal and power consumption are 92.87 %; 0.866 kWh/m3 and 86.34 %; 1.12 kWh/m3 respectively under optimized variable conditions, current density: 2.78 mA/cm2, pH: 6.98 and electrolysis time: 88.02 minutes at high desirability level.


Author(s):  
Parisa Mahmoudpoor Moteshaker ◽  
Seyed Ehsan Rokni ◽  
Narges Farnoodian ◽  
Nasrin Mohassel Akhlaghi ◽  
Sommayeh Saadi ◽  
...  

AbstractPharmaceutical compounds in drinking water sources, in addition to threatening environmental health, increase bacterial resistance in aquatic environments. The purpose of this study was to investigate the application of response surface methodology for the optimization of the electrochemical process in the removal of metronidazole (MNZ) aqueous solutions using stainless steel 316 (SS316) and Lead (Pb) anodes. In this experimental study, the effect of different parameters including pH (4–10), electrolysis time (40–120 min), MNZ antibiotic concentration (30–150 mg/L), and current density (2–10 mA/cm2) on Antibiotic removal efficiency was evaluated by a central composite design method using Design-Expert software. Data were analyzed using ANOVA and p-Value tests. Hence, central composite design (CCD) established a reduced quadratic polynomial model with P-value < 0.0001 and R2 = 0.98. The optimal values for the solution pH initial, electrolysis time, current density, and MNZ antibiotic concentration were 5.5, 100.0 min, 8.0 mA/cm2, and 50 mg/L, respectively. By employing the optimum conditions obtained, the maximum experimental removal efficiencies by SS316 and Pb anodes were 67.85 and 78.66%, respectively. The Chemical Oxygen Demand/total organic carbon (COD/TOC) ratio was decreased from 1.67 at the inlet to 1.53 at the outlet for SS316 and from 1.7 to 1.42 for Pb. Moreover, average oxidation state (AOS) was increased from 1.45 to 1.7 for SS316 and from 1.45 to 1.86 for Pb, which indicates the biodegradability of MNZ antibiotics by the electrochemical process. The electrochemical degradation process was identified as an effective method for the removal of MNZ from aquatic solutions, and it has an outstanding potential in removing other refractory pollutants from the environment.


2020 ◽  
Author(s):  
Shaimaa T Kadhum ◽  
Ghayda Y Alkindi ◽  
Talib M Albayati

Abstract The rise in toxic industrial and domestic wastewater due to urbanization makes it necessary to pursue new, alternative routes for the removal of refractory pollutants. In this study, both unsupported nano zerovalent iron (NZVI) and silty clay-supported nano zerovalent iron (SC-NZVI) were employed as a granular third electrode (3-D) in an electrochemical reactor. The electrochemical system with two aluminum electrodes as anode and cathode was performed as a granular third electrode treatment process to degrade aqueous phenol. The maximum removal rate of phenol using the tow electrodes electrochemical process (2-D) was 82%. The optimum conditions in a 2-D electrode were as follows: pH = 4, electrolysis time = 30 min, current density = 50 mA/cm2, electrode distance = 4 cm, and phenol concentration = 0.5 g/L. It was concluded that the 3-D electrode system exhibited high efficiency in removing phenolic wastewater in a third electrode system. The optimum conditions were as follows: pH = 2, electrolysis time = 30 min, current density = 50 mA/cm2, electrode distance = 4 cm, and phenol concentration = 0.5 g/L. The maximum removal efficiencies of phenol in the presence of a 3-D electrode with doses of NZVI = 1 g/L or SC-NZVI = 1.25 g/L were 96.1 and 97.8%, respectively.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1546
Author(s):  
Árpád Imre-Lucaci ◽  
Melinda Fogarasi ◽  
Florica Imre-Lucaci ◽  
Szabolcs Fogarasi

This paper presents a novel approach for the recovery of lead from waste cathode-ray tube (CRT) glass by applying a combined chemical-electrochemical process which allows the simultaneous recovery of Pb from waste CRT glass and electrochemical regeneration of the leaching agent. The optimal operating conditions were identified based on the influence of leaching agent concentration, recirculation flow rate and current density on the main technical performance indicators. The experimental results demonstrate that the process is the most efficient at 0.6 M acetic acid concentration, flow rate of 45 mL/min and current density of 4 mA/cm2. The mass balance data corresponding to the recycling of 10 kg/h waste CRT glass in the identified optimal operating conditions was used for the environmental assessment of the process. The General Effect Indices (GEIs), obtained through the Biwer Heinzle method for the input and output streams of the process, indicate that the developed recovery process not only achieve a complete recovery of lead but it is eco-friendly as well.


2020 ◽  
Vol 8 (5) ◽  
pp. 104368
Author(s):  
Neanderson Galvão ◽  
Jeanette Beber de Souza ◽  
Carlos Magno de Sousa Vidal

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Musa Ahmed ◽  
Ibnelwaleed A. Hussein ◽  
Abdulmujeeb T. Onawole ◽  
Mohammed A. Saad ◽  
Mazen Khaled

AbstractPyrite scale formation is a critical problem in the hydrocarbon production industry; it affects the flow of hydrocarbon within the reservoir and the surface facilities. Treatments with inorganic acids, such as HCl, results in generation toxic hydrogen sulfide, high corrosion rates, and low dissolving power. In this work, the dissolution of pyrite scale is enhanced by the introduction of electrical current to aid the chemical dissolution. The electrolytes used in this study are chemical formulations mainly composed of diethylenetriamine-pentaacetic acid–potassium (DTPAK5) with potassium carbonate; diethylenetriamine pentaacetic acid sodium-based (DTPANa5), and l-glutamic acid-N, N-diacetic acid (GLDA). DTPA and GLDA have shown some ability to dissolve iron sulfide without generating hydrogen sulfide. The effect of these chemical formulations, disc rotational rate and current density on the electro-assisted dissolution of pyrite are investigated using Galvanostatic experiments at room temperature. The total iron dissolved of pyrite using the electrochemical process is more than 400 times higher than the chemical dissolution using the same chelating agent-based formulation and under the same conditions. The dissolution rate increased by 12-folds with the increase of current density from 5 to 50 mA/cm2. Acid and neutral formulations had better dissolution capacities than basic ones. In addition, doubling the rotational rate did not yield a significant increase in electro-assisted pyrite scale dissolution. XPS analysis confirmed the electrochemical dissolution is mainly due to oxidation of Fe2+ on pyrite surface lattice to Fe3+. The results obtained in this study suggest that electro-assisted dissolution is a promising technique for scale removal.


2012 ◽  
Vol 441 ◽  
pp. 555-558
Author(s):  
Feng Tao Chen ◽  
San Chuan Yu ◽  
Xing Qiong Mu ◽  
Shi Shen Zhang

The Ti/SnO2-Sb2O3/PbO2 electrodes were prepared by thermal decomposition method and its application in the electrochemical degradation of a heteropolyaromatic dye, Methylene blue (MB), contained in simulated dye wastewater were investigated under mild conditions. The effects of pH, current density and electrolysis time on de-colorization efficiency were also studied. Chemical oxygen demand (COD) was selected as another parameter to evaluate the efficiency of this degradation method on treatment of MB wastewater. The results revealed that when initial pH was 6.0, current density was 50 mA·cm2, electrolysis time was 60 min, Na2SO4 as electrolyte and its concentration was 3.0 g·dm3, the de-colorization and COD removal efficiency can reach 89.9% and 71.7%, respectively.


Sign in / Sign up

Export Citation Format

Share Document