scholarly journals Concrete Debris as Alternative Fine Aggregate for Architectural Finishing Mortar

2012 ◽  
Vol 2 (5) ◽  
pp. 111-114
Author(s):  
Tomas Ucol-Ganiron Jr
Keyword(s):  
Author(s):  
Rizwan Ahmad Khan ◽  

This paper investigates the fresh and durability properties of the high-performance concrete by replacing cement with 15% Silica fume and simultaneously replacing fine aggregates with 25%, 50%, 75% and 100% copper slag at w/b ratio of 0.23. Five mixes were analysed and compared with the standard concrete mix. Fresh properties show an increase in the slump with the increase in the quantity of copper slag to the mix. Sorptivity, chloride penetration, UPV and carbonation results were very encouraging at 50% copper slag replacement levels. Microstructure analysis of these mixes shows the emergence of C-S-H gel for nearly all mixes indicating densification of the interfacial transition zone of the concrete.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Songlin Yue ◽  
Yanyu Qiu ◽  
Pengxian Fan ◽  
Pin Zhang ◽  
Ning Zhang

Analogue material with appropriate properties is of great importance to the reliability of geomechanical model test, which is one of the mostly used approaches in field of geotechnical research. In this paper, a new type of analogue material is developed, which is composed of coarse aggregate (quartz sand and/or barite sand), fine aggregate (barite powder), and cementitious material (anhydrous sodium silicate). The components of each raw material are the key influencing factors, which significantly affect the physical and mechanical parameters of analogue materials. In order to establish the relationship between parameters and factors, the material properties including density, Young’s modulus, uniaxial compressive strength, and tensile strength were investigated by a series of orthogonal experiments with hundreds of samples. By orthogonal regression analysis, the regression equations of each parameter were obtained based on experimental data, which can predict the properties of the developed analogue materials according to proportions. The experiments and applications indicate that sodium metasilicate cemented analogue material is a type of low-strength and low-modulus material with designable density, which is insensitive to humidity and temperature and satisfies mechanical scaling criteria for weak rock or soft geological materials. Moreover, the developed material can be easily cast into structures with complex geometry shapes and simulate the deformation and failure processes of prototype rocks.


2021 ◽  
Vol 13 (5) ◽  
pp. 2867
Author(s):  
Muhammad Izhar Shah ◽  
Muhammad Nasir Amin ◽  
Kaffayatullah Khan ◽  
Muhammad Sohaib Khan Niazi ◽  
Fahid Aslam ◽  
...  

The waste disposal crisis and development of various types of concrete simulated by the construction industry has encouraged further research to safely utilize the wastes and develop accurate predictive models for estimation of concrete properties. In the present study, sugarcane bagasse ash (SCBA), a by-product from the agricultural industry, was processed and used in the production of green concrete. An advanced variant of machine learning, i.e., multi expression programming (MEP), was then used to develop predictive models for modeling the mechanical properties of SCBA substitute concrete. The most significant parameters, i.e., water-to-cement ratio, SCBA replacement percentage, amount of cement, and quantity of coarse and fine aggregate, were used as modeling inputs. The MEP models were developed and trained by the data acquired from the literature; furthermore, the modeling outcome was validated through laboratory obtained results. The accuracy of the models was then assessed by statistical criteria. The results revealed a good approximation capacity of the trained MEP models with correlation coefficient above 0.9 and root means squared error (RMSE) value below 3.5 MPa. The results of cross-validation confirmed a generalized outcome and the resolved modeling overfitting. The parametric study has reflected the effect of inputs in the modeling process. Hence, the MEP-based modeling followed by validation with laboratory results, cross-validation, and parametric study could be an effective approach for accurate modeling of the concrete properties.


Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


Sign in / Sign up

Export Citation Format

Share Document