scholarly journals Ground reaction force patterns during gait in patients with lower limb lymphedema

2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Isabel Forner-Cordero ◽  
Fabianne Furtado ◽  
Juan Cervera-Deval ◽  
Arturo Forner-Cordero
2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yi Wang ◽  
Wing-Kai Lam ◽  
Lok-Yee Pak ◽  
Charis K.-W. Wong ◽  
Mohammad F. Tan ◽  
...  

While colour of red can play a significant role in altering human perception and performances, little is known about its perceptual-motor effect on running mechanics. This study examined the effects of variations in insole colours on impact forces, ankle kinematics, and trial-to-trial reliability at various running speeds. Sixteen male recreational runners ran on instrumented treadmill at slow (90%), preferred (100%), and fast (110%) running speeds when wearing insoles in red, blue, and white colours. We used synchronized force platform and motion capturing system to measure ground reaction force, ankle sagittal and frontal kinematics, and movement variability. A two-way (colour x speed) ANOVA with repeated measures was performed with Bonferroni adjusted post hoc comparisons, with alpha set at 0.05. Data analyses indicated that participants demonstrated higher impact and maximum loading rate of ground reaction force, longer stride length, shorter contact time, and smaller touchdown ankle inversion as well as larger ankle sagittal range of motion (RoM), but smaller frontal RoM in fast speed as compared with preferred P < 0.05 and slow speeds P < 0.001 . Although insole colour had minimal effect on mean values of any tested variables P > 0.05 , participants wearing red-coloured orthoses showed higher coefficient of variation values for maximum loading rate than wearing blue insoles P = 0.009 . These results suggest that running at faster speed would lead to higher impact loading and altered lower-limb mechanics and that colour used on the tops of insoles influences the wearers’ movement repeatability, with implications for use of foot insole in running.


2020 ◽  
Vol 10 (8) ◽  
pp. 2638 ◽  
Author(s):  
Shuo Gao ◽  
Yixuan Wang ◽  
Chaoming Fang ◽  
Lijun Xu

Automatic terrain classification in lower limb rehabilitation systems has gained worldwide attention. In this field, a simple system architecture and high classification accuracy are two desired attributes. In this article, a smart neuromuscular–mechanical fusion and machine learning-based terrain classification technique utilizing only two electromyography (EMG) sensors and two ground reaction force (GRF) sensors is reported for classifying three different terrains (downhill, level, and uphill). The EMG and GRF signals from ten healthy subjects were collected, preprocessed and segmented to obtain the EMG and GRF profiles in each stride, based on which twenty-one statistical features, including 9 GRF features and 12 EMG features, were extracted. A support vector machine (SVM) machine learning model is established and trained by the extracted EMG features, GRF features and the fusion of them, respectively. Several methods or statistical metrics were used to evaluate the goodness of the proposed technique, including a paired-t-test and Kruskal–Wallis test for correlation analysis of the selected features and ten-fold cross-validation accuracy, confusion matrix, sensitivity and specificity for the performance of the SVM model. The results show that the extracted features are highly correlated with the terrain changes and the fusion of the EMG and GRF features produces the highest accuracy of 96.8%. The presented technique allows simple system construction to achieve the precise detection of outcomes, potentially advancing the development of terrain classification techniques for rehabilitation.


2005 ◽  
Vol 23 (10) ◽  
pp. 1045-1055 ◽  
Author(s):  
Eleftherios Kellis ◽  
Fotini Arambatzi ◽  
Christos Papadopoulos

2020 ◽  
Vol 25 (5) ◽  
pp. 258-262
Author(s):  
Lewis J. Vizard ◽  
Gareth Peden ◽  
Maximilian M. Wdowski

The aim of this study was to examine if lower-limb kinetic and kinematic asymmetries are transferred between sprint running and countermovement jumps in a group of university Rugby Union players. Eight university Rugby Union players (20.3 ± 1.6 years) participated in the study. Three-dimensional kinematic and force platform data recorded sprint runs and countermovement jumps. Across the two movements there was a substantial and moderate level of agreement for the ankle range of motion and peak normalized ground reaction force, respectively. No significant differences were observed between interlimb kinematic and kinetic variables at the group level. Lower-limb asymmetries may be transferred across dynamic movements and are present at the individual level.


2018 ◽  
Vol 27 (4) ◽  
pp. 319-326 ◽  
Author(s):  
Guillermo Mendez-Rebolledo ◽  
Rodrigo Ramirez-Campillo ◽  
Eduardo Guzman-Muñoz ◽  
Valeska Gatica-Rojas ◽  
Alexis Dabanch-Santis ◽  
...  

Context: Kinesio taping is commonly used in sports and rehabilitation settings with the aim of prevention and treatment of musculoskeletal injuries. However, limited evidence exists regarding the effects of 24 and 72 hours of kinesio taping on trunk and lower limb neuromuscular and kinetic performance during a vertical jump. Objective: The purpose of this study was to analyze the short-term effects of kinesio taping on height and ground reaction force during a vertical jump, in addition to trunk and lower limb muscle latency and recruitment order. Design: Single-group pretest–posttest. Setting: University laboratory. Participants: Twelve male athletes from different sports (track and field, basketball, and soccer). Interventions: They completed a single squat and countermovement jump at basal time (no kinesio taping), 24, and 72 hours of kinesio taping application on the gluteus maximus, biceps femoris, rectus femoris, gastrocnemius medialis, and longissimus. Main Outcome Measures: Muscle onset latencies were assessed by electromyography during a squat and countermovement jump, in addition to measurements of the jump height and normalized ground reaction force. Results: The kinesio taping had no effect after 24 hours on either the countermovement or squat jump. However, at 72 hours, the kinesio taping increased the jump height (P = .02; d = 0.36) and normalized ground reaction force (P = .001; d = 0.45) during the countermovement jump. In addition, 72-hour kinesio taping reduced longissimus onset latency (P = .03; d = 1.34) and improved muscle recruitment order during a countermovement jump. Conclusions: These findings suggest that kinesio taping may improve neuromuscular and kinetic performance during a countermovement jump only after 72 hours of application on healthy and uninjured male athletes. However, no changes were observed on a squat jump. Future studies should incorporate a control group to verify kinesio taping’s effects and its influence on injured athletes.


2014 ◽  
Vol 40 (1) ◽  
pp. 67-75 ◽  
Author(s):  
David Zahradnik ◽  
Jaroslav Uchytil ◽  
Roman Farana ◽  
Daniel Jandacka

Abstract A non-contact anterior cruciate ligament (ACL) injury is both a serious and very common problem in volleyball. The aim of the study was to determine the association between stick, step-back, and run-back landings after a block and select risk factors of ACL injuries for female professional volleyball players. The research sample involved fourteen female professional volleyball players. Two force plates were used to determine ground reaction forces. Eight infrared cameras were employed to collect the kinematic data. The one-factor repeated-measures analysis of variance, where the landing type was the factor, was used for comparing the valgus moment and ground reaction force on the right lower limb. ANOVA showed that the type of landing has a main effect on the valgus moment on the right lower limb (F) = 5.96, p = 0.019df = 1.18, partial ƞ2 = 0.239 and SP = 0.693). Furthermore, it did not show a main effect on the vertical reaction force on the right lower limb ((F)=2.77, p=0.090, df=1.55, partial ƞ2= 0.128 and SP=0.448). The highest valgus moment occurred during the run-back landing. This moment, however, did not have any effect within the first 100 ms after initial contact with the ground, but rather upon the subsequent motion carried out when stepping back off the net. A comparison between a run-back landing and a step-back landing showed relevant higher values of vertical ground reaction forces during the run-back landing.


2019 ◽  
Vol 18 (2) ◽  
pp. 90-96 ◽  
Author(s):  
Salam M. Elhafez ◽  
Ahmed A. Ashour ◽  
Naglaa M. Elhafez ◽  
Ghada M. Elhafez ◽  
Azza M. Abdelmohsen

Sign in / Sign up

Export Citation Format

Share Document