scholarly journals BEARING CAPACITY OF FOLDED PLATE FOUNDATIONS IN CLAY SOIL

Author(s):  
Ratna Dewi ◽  
Yakni Idris ◽  
Yulindasari Sutejo ◽  
Said Agil Al Munawar

The design of a foundation is inseparable from the type and strength of the soil, for example, clay soils have poor properties for structures due to their low bearing capacity. Therefore, it is necessary to modify the model of a foundation to increase its bearing capacity and one of the popular methods is the application of folded plate on a flat foundation with angles and flange lengths on both sides. Therefore, this research presented its application at different flange lengths of 0.5B, 0.75B, 1B, 1.25B, and 1.5B where B is the width of the flat plate and the results showed the bearing capacity of the folded plate was higher than the flat foundation. Moreover, an increment in the folded length led to a bigger ultimate load and smaller settlement but the ultimate load and settlement were observed to be almost constant at over 1B. This means the optimum variation where the flange length is equal to the foundation width is 1B and it was observed to have increased by 129.52 % using the Tangent Method and 148.4 7% with Butler Hoy Method. Meanwhile, the lowest settlement factor for the folded plate foundation was 0.22 with the highest bearing capacity of 61.19 kN/m2

2014 ◽  
Vol 6 (5) ◽  
pp. 488-492 ◽  
Author(s):  
Romas Girkontas ◽  
Tadas Tamošiūnas ◽  
Andrius Savickas

The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bearing capacity and failure mode were determined. For investigations Vilnius Gediminas Technical University Civil Engineering Scientific Research Center infrastructure was used. Tyrimo tikslas – nustatyti molinio grunto mišinių džiūvant atsirandančias deformacijas. Eksperimentams buvo naudojama: a) moliniai ir molio mišinių tiltai (aukštis ~0,30 m, tarpatramis ~1,00 m, plotis 0,07–0,1 m); b) plytelės iš molio; molio, smėlio ir šiaudų (l; b; h); c) cilindrai iš molio; molio ir šiaudų; molio, šiaudų, smėlio (d; h). Pagal gautus bandymo rezultatus pateiktos rekomendacijos molinių gruntų mišinių džiovinimo technologijai taikyti. Nustatyta molinių tiltų laikomoji galia ir suirimo pobūdis. Atliekant tyrimus buvo pasinaudota Vilniaus Gedimino technikos universiteto Civilinės inžinerijos mokslo centro MTEP infrastruktūra.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 424 ◽  
Author(s):  
Maxwel Joseph Henri Nainggolan ◽  
Wiwik Rahayu ◽  
Puspita Lisdiyanti

In recent years, utilization of biotechnology in geotechnical field has rapidly grown. One of the biotechnologies being utilized is urease enzyme, a stabilization material by bio-cementation method studied in this research.  Urease enzyme is manually mixed with additional 10% of clay soil to clay shale. The objective of mixing it is to increase the bearing capacity of the clay shale. Consolidated undrained triaxial test was performed for testing the soil strength performance for samples that had undergone curing for 2, 4, and 6 weeks. The results indicated that the sample stiffens, proved by the increase of shear strength from consolidated undrained triaxial test. The shear strength value produced by the variation of the urease enzyme mixture + 10% the clay is higher than that of without the original clay shale.  


2012 ◽  
Vol 204-208 ◽  
pp. 1066-1069
Author(s):  
Yan Jun Li ◽  
Ping Liu

Four specially shaped columns with HRB500 reinforcement were tested under low cyclic loading. The hysteretic curve, yield load, ultimate load, displacement ductility and rigidity degradation were compared in order to research the effect of axial compression ratio on ductility and bearing capacity of specially shaped column with HRB500 reinforcement. It is shown that the axial compression ratio has greater influence on ductility and bearing capacity. With the increase of axial compression ratio, the bearing capacity of HRB500 reinforcement concrete specially shaped column can be enhanced while the deformation capacity becomes worse. The hysteretic characteristic of specially shaped columns with HRB500 reinforcement is improved and the stiffness degeneration becomes slow with the decrease of axial compression ratio.


Géotechnique ◽  
2013 ◽  
Vol 63 (15) ◽  
pp. 1285-1297 ◽  
Author(s):  
K.K. LEE ◽  
M.F. RANDOLPH ◽  
M.J. CASSIDY

2021 ◽  
Vol 90 (2 - Ahead of print) ◽  
pp. 70-85
Author(s):  
Mervat Abdel-Moneauim Mostafa El-Genaidy ◽  
Mohamed Abd El-Aziz Mohamed Hindy ◽  
Nehad Abdel-Hameed Soliman

Peach fruit fly, Bactrocera zonata (Saunders, 1841) is a destructive polyphagous pest threatening the horticultural production in Egypt. Licorice, Glycyrrhiza glabra (Linnaeus, 1753) is a plant growing in Egypt and many other countries and famous for saponins groups that have insecticidal effect against broad spectrum of insect pests. In the present study, the insecticidal effect of licorice roots aqueous extract (LRAE), petroleum oil, KZ light mineral oil 96% (EC), water and an emulsion (1/4 L LRAE + ¼ L petroleum oil + ½ L KZ light oil 96% (EC)) treatments in a ratio 1 L: 29 L water were used in Matabi® sprayer of 30 L capacity against B. zonata pupae in sandy and clay soils. In sandy and clay soils LRAE reduced B. zonata population by 74.44% and 87.55% while petroleum oil, KZ light mineral oil 96% (EC) prevented flies emergence (100% reduction). Water treatment suppressed B. zonata population by 78.61% in sandy soil but caused 100% population reduction in clay soil. The emulsion reduced B. zonata population by 96.94% in sandy soil and 100% in clay soil. The best method for application of the emulsion was to spray as one target spray technique for eight seconds that was sufficient to obtain suitable coverage on soil with spray speed 1.2 km / hour. The persistence of the emulsion that highly reduced B. zonata larval populations was 3.5 and 4.5 days in sandy and clay soils, respectively. The flies emerged from B. zonata pupae treated with the emulsion neither feed nor move naturally. The histological studies showed that these flies suffered changes in the eyes, labellum, muscles and midgut tissues that were different from the emerged control treatment flies.


2018 ◽  
Vol 4 (3) ◽  
pp. 594 ◽  
Author(s):  
Davood Akbarimehr ◽  
Esmael Aflaki

With respect to the increasing production of tire wastes, the use of these wastes as an additive in civil engineering has always gained attentions of researchers due to their positive effects on material properties and reduction of environmental problems. Clay soils, as problematic soils, have always caused geotechnical problems including high Atterberg limits and consequently low workability. Tire powder, as one of the products of tire wastes, lacks clay cohesion and it can be effective in altering the plasticity of clay soils. As no comprehensive study has been conducted in this regard specifically on Tehran clay soil yet, this research studies experimentally the effect of adding different percentages of tire powder to clay soil at the Atterberg limits of clay soils with two different types of plasticity. More over according to previous studies, the effect of tire powder on other geotechnical properties of clay soils and the advantages and disadvantages of using tire powder in clay soils are discussed. The results indicate that addition of tire powder to clay soils has positive effects on reducing the Atterberg limits, increasing efficiency, and improving resistance, permeability, swelling reduction, and settlement properties, and reducing soil density and it can be used as an additive in improving clay soils.


Author(s):  
Alexey Kolos ◽  
Andrei Romanov ◽  
Evgeniy Shekhtman ◽  
Gennadii Akkerman ◽  
Anastasia Konon ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document