scholarly journals The efficiency of galvanic wastewater treatment facility 'Frad' in Aleksinac

2020 ◽  
Vol 8 (2) ◽  
pp. 78-85
Author(s):  
Jasmina Veličković ◽  
Nebojša Arsić ◽  
Ljiljana Stošić

The technological process of Galvano-chemical protection, according to qualitatively-quantitative characteristics, represents one of the most complex contaminants in wastewater. A large number of contaminants (metal ions, cyanides, acids, bases, grease and oils, organic solvents, surfactants, phosphates, etc.), found in galvanic wastewater are treated through conventional methods (chemical oxidation and reduction, neutralization, sedimentation, coagulation and flocculation). The reason why galvanic wastewater treatment systems in the Republic of Serbia are conventional is of economic nature. The present study has been undertaken to evaluate the performance of Sewage Treatment Plant located at Aleksinac, Company of "Frad" district which is based on Sequential Batch Reactor process. Performance of this plant is an essential parameter to be monitored as the treated effluent is discharged into the Moravica River. The Performance Evaluation will also help for the better understanding of design and operating difficulties (aeration, blowers, etc.) in Sewage Treatment Plant. Research goal: The efficiency of sewage treatment plants can be illustrated by a study on the evaluation of pollutant levels of the influent and the effluent at the treatment plant of sewage treatment plants discharging into the environment.

2020 ◽  
Vol 5 (2) ◽  
pp. 53-57
Author(s):  
Nandini Moondra ◽  
Namrata D Jariwala ◽  
Robin A Christian

Conventional domestic wastewater treatment in most developing countries is confined to secondary treatments, mainly focusing on solids and organics removal, which results in eutrophication when the effluents are discharged into receiving bodies. Thus, to resolve the issues associated with the conventional treatment system, in the present study, microalgae was introduced in the primary treated effluent collected from a sewage treatment plant to study the efficiency of the system in reducing eutrophication and other challenges of secondary treatment. Phycoremediation is an effective and eco-friendly treatment alternative that reduced the primary-treated effluent’s PO4-P, NH3-N and COD concentration to 97.89%, 98.81%, and 88.24%, respectively at the identical HRT practiced for secondary treatment. One-way ANOVA was also conducted to determine the effectiveness of the system statistically. The experimental and statistical analysis proved that microalgal treatment could resolve the challenges of conventional secondary treatments if adopted for domestic wastewater.


2014 ◽  
Vol 955-959 ◽  
pp. 1437-1442
Author(s):  
Hai Bo Yu ◽  
Yu Zhao Feng ◽  
Wei Peng ◽  
Li Wei Sheng ◽  
Hong Lu Li ◽  
...  

Sequencing Batch Reactor (SBR) wastewater treatment process has lots of characteristics, such as randomness, time-varying characteristics, complexity and so on. In order to solve the above problems, a predictive PID control method based on DMC and ordinary PID for SBR wastewater treatment process dissolved oxygen (DO) control was proposed. The simulation studies were conducted with the MATLAB in a sewage treatment plant. The results showed that the proposed predictive PID control method was robust and jamproof. Meanwhile, the wastewater treatment system also had a strong capacity of shock load.


1996 ◽  
Vol 33 (12) ◽  
pp. 219-228 ◽  
Author(s):  
Harro Bode ◽  
Klaus R. Imhoff

From the year 2005 onwards German waste disposal regulations prevent the disposal of residual wastes from sewage treatment plants in landfills if the waste contains more than 5% volatile solids by dry mass. As a result of this requirement the Ruhrverband, one of Germany's largest sewage treatment plant operators, needs to change its disposal methods to a certain extent. This paper describes the present ways to dispose of sludge as well as of screenings and grit. After that it outlines the concept for future disposal. Besides the legal framework the technical solutions for the different disposal problems are described and their costs are given.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 37 (2) ◽  
Author(s):  
Maciej Walczak

Changes of microbial indices of water quality in the Vistula and Brda rivers as a result of sewage treatment plant operationThis paper reports the results of studies of microbiological changes in the water quality of the Vistula and Brda rivers after the opening of sewage treatment plants in Bydgoszcz. The study involved determining the microbiological parameters of water quality. Based on the results obtained, it was found that the quality of the water in both rivers had improved decidedly after the opening of the plants, although an increased number of individual groups of microorganisms was found at the treated sewage outlet from one of the plants.


1995 ◽  
Vol 30 (4) ◽  
pp. 565-592 ◽  
Author(s):  
A.F. Gemza

Abstract Severn Sound continues to exhibit signs of eutrophication despite initial identification of the problem in 1969 and the construction of several sewage treatment plants since then. In general, improvements in trophic state indicators have been marginal, suggesting that the sewage treatment plants have had limited success in controlling phosphorus concentrations. These discharges likely contributed to the increased total phosphorus levels and consequently the higher phytoplankton densities of the nearshore waters. Phytoplankton biovolumes were on average one order of magnitude higher than in the open waters of Lake Huron with mean summer biovolumes as high as 8.0 mm/L. Algal biovolumes were most dense in Penetang Bay, which experienced limited exchange with the main waters of the sound. No significant long-term trends were observed. Water clarity was declining significantly, however, at a rate of -0.60 to -0.78 m/year throughout the sound except in Sturgeon Bay. Total phosphorus levels were highly variable from year to year; however, concentrations from a 20-year perspective were declining in the open waters at a rate of 0.70 µg/L/year, but response was limited in nearshore areas. In Sturgeon Bay, mean annual euphotic zone total phosphorus as well as soluble reactive phosphorus levels declined by as much as 50% following the construction of a sewage treatment plant with tertiary treatment. Phytoplankton genera typical of eutrophic waters continued to dominate the algal assemblage but members indicative of mesotrophic conditions have become apparent in some areas of the sound.


2021 ◽  
Author(s):  
Yanyan Fang

Abstract Microplastics (MPs) have been found in all environment matrices and have become an issue of concern worldwide. In this study, Baiyangdian Lake in Northern China was investigated for the presence of MPs (0.45 µm–5 mm) in sediment and at different water depths. MPs were found at 1,000–20,000 pieces/m3 (average 9,595) in water and at 400–2,200 pieces/kg (average 1,023) in sediment. Since the implementation of pollution abatement measures, visible MPs have been nearly eliminated; the MPs found in this study were mainly in the micrometer range, with no more than 3–5 pieces greater than 1 mm per sample. The main forms of MPs were fibrous and fragmented, and the main components were polyamide, polyethylene, and polypropylene. MPs found in water near a garbage transfer station showed the following abundance of MPs: surface water < middle water < bottom water. The sediment contained a higher amount of MP fragments, indicating that the historical transfer and disposal of garbage was a main source of plastic deposition in this area. There was a high content of fibrous MPs in surface water, while the abundance of fragmented MPs increased with the depth of water. The main sources of MPs in the study area were residential activities, local plastic factories, and the treated effluent from a sewage treatment plant.


2021 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Natalia Taraszkiewicz

The development of sewage systems leads to an increase in people’s living standards and an improvement in the comfort of their daily lives. In 2021, the use of septic tanks is still a big issue; many of them are not properly sealed and can be harmful to the environment because of leakage. A good alternative for them is an individual sewage treatment plant. There are many types of such investment. This paper focuses on the selection between three types of sewage treatment plants (a biological wastewater treatment plant with activated sludge and a constructed wasteland) using MCDA–AHP and TOPSIS methods.


2019 ◽  
Vol 15 (1) ◽  
pp. 40-44 ◽  
Author(s):  
Bikram Gautam ◽  
Anjita Rajbhanshi ◽  
Rameshwar Adhikari

Background: Water sources such as lakes, ponds, river etc. have been continuously contaminated by the   micro organisms and chemicals. The former can pose a significant threat to human health. This work aims at detecting the bacterial load before and after the sewage treatment and hence isolating pathogens from the sewage before primary treatment and secondary treated effluent. Methods: Grab sampling (50mL sewage before primary treatment and secondary treated effluent) was performed for 20 days in the Guheswori  sewage treatment plant. The reduction in microbial load was determined through heterotrophic plate count. Pathogens were screened from the effluent obtained from the secondary treatment plant. Results: Bacterial load reduction was found to be about 48.02% on average. The observed bacterial load reduction might have been caused by bacteriophage flocculation and sedimentation. Pathogens isolated from the treated effluent were Escherichia coli, Salmonella Typhi, Enterococcus faecalis, Staphylococcus aureus, Coagulase negative Staphylococcus (CONS), Citrobacter fruendii, Enterobacter aerogenes, Proteus mirabilis, P. vulgaris, Pseudomonas  aeruginosa. Conclusions: It has been found that the sewage treatment plant helps to reduce the bacterial load which is, however, not capable of effluent polishing where all pathogens are killed. 


1983 ◽  
Vol 15 (9) ◽  
pp. 1205-1217 ◽  
Author(s):  
Y Kitabatake ◽  
T Miyazaki

A theoretical model of the sewage treatment plant location problem is presented, based on the assumptions of a homogeneous space and a homogeneous channel geometry of a river running parallel to a one-dimensional region. The analytical structure of the model is discussed. The model is then applied to the specific case of a suburban region of the Tokyo Metropolitan Region, where both the homogeneity assumptions are dropped. The numerical simulations show clearly how the heterogeneity in population distribution and river characteristics, as well as the trade-off ratio between water quality and least cost expenditure, affects the optimal plant locations.


Sign in / Sign up

Export Citation Format

Share Document