Experimental and Numerical Investigation of DARPA Suboff Submarine Propelled with INSEAN E1619 Propeller for Self-Propulsion

2019 ◽  
Vol 63 (4) ◽  
pp. 235-250
Author(s):  
Yasemin Arıkan Özden ◽  
Münir Cansın Özden ◽  
Ersin Demir ◽  
Sertaç Kurdoğlu

The Defense Advanced Research Projects Agency (DARPA) Suboff Submarine propelled by the Italian Ship Model Basin (INSEAN) E1619 propeller is extensively used in submarine validation studies. Although there are several numerical studies where the DARPA Suboff submarine is used in combination with E1619 propeller there are no experimental data available in open literature for the self-propulsion condition. In this article, the self-propulsion characteristics of the DARPA Suboff submarine model with INSEAN E1619 propeller obtained with experimental and numerical methods are presented and discussed by means of Taylor wake fraction, thrust deduction, hull efficiency, relative rotative efficiency, and propulsive efficiency. To experimentally investigate the submarine form, a self-propulsion experimental setup is designed and manufactured. Resistance and self-propulsion experiments are conducted in Istanbul Technical University Ata Nutku Ship Model Testing Laboratory. Resistance tests are carried out for three different speeds, and the results show good agreement with the published experimental results. Propulsion tests are conducted by using the load-varying self-propulsion test method for constant speed and seven different propeller rotation rates. Rotational speed, thrust, and torque forces at self-propulsion point are investigated. For the numerical computations a commercial Computational Fluid Dynamics (CFD) code is used. Propeller open water characteristics and nondimensional velocities behind the propeller are calculated. Self-propulsion point of the submarine and propeller assembly is also solved numerically and the results are compared with the results obtained from the experiments, and it is seen that especially the propeller rate of revolution and thrust force are predicted with very good approximation.

2015 ◽  
Author(s):  
Woo-Chan Seok ◽  
Hyoungsuk Lee ◽  
Tobias Zorn ◽  
Vladimir Shigunov

For the analysis, a vane wheel was considered consisting of two portions, namely, a turbine portion and a propeller portion. The turbine portion was designed using Blade Element Momentum Theory (BEMT); the propeller portion, Computational Fluid Dynamics (CFD) under open-water conditions. Model tests were conducted at Hyundai Maritime Research Institute (HMRI) in their towing tank, using a Contra Rotating Propeller (CRP) dynamometer. Model tests as well as full-scale CFD calculations were performed to predict overall performance. The CFD calculations showed better performance compared to the model tests. In general, the analyzed vane wheel improved the propulsive efficiency via power reduction compared to the case without a vane wheel.


2013 ◽  
Vol 694-697 ◽  
pp. 673-677 ◽  
Author(s):  
Da Zheng Wang ◽  
Dan Wang ◽  
Lei Mei ◽  
Wei Chao Shi

In this paper, the open water performance of a pod propeller in the viscous flow fields is numerically simulated by the Computational Fluid Dynamics (CFD) method. Based on the coordinate transformation formula for transforming the local to the global coordinate, mathematical model of a propeller is created. Thrust and torque coefficients corresponding to different advance coefficients of the model are calculated by ANSYS-CFX with three different turbulence models. The pressure distributions on the blade surface are also presented. Comparisons show that experimental results and numerical results agree well, with SST k-ω and RNG k-ε more accurate than the standard k-ε.


2015 ◽  
Vol 59 (04) ◽  
pp. 190-200
Author(s):  
Yuwei Li ◽  
Ezequiel Martin ◽  
Thad Michael ◽  
Pablo M. Carrica

This paper presents a study of the effects of the interaction of the free surface with a marine propeller operating close to it, including the effects of depth and cross flow. Extensive simulations using the naval hydrodynamics computational fluid dynamics solver REX were conducted to study the open water characteristics, transient blade loads, and flow behavior of propeller 4661, with comparison to fully submerged experimental data at 0° and 30° shaft inclination with respect to the incoming flow. Deeply submerged computations and experiments show that the cross flow results in an increase in thrust and torque and lower efficiency relative to uniform inflow. Near the surface, computations show that effects on thrust and torque increase more dramatically as the propeller load increases. Furthermore, the presence of the free surface breaks the symmetry resulting in highest blade force losses when the blade is near top dead center. As the propeller approaches the surface, the amplitude of the higher harmonics of blade force increases. A demonstration calculation for a self-propelled submarine sailing deep and near the surface shows that operating closer to the surface results in higher propeller loads and lower efficiency.


Nowadays with the development of computational resources, calculating the open water characteristics of the propeller using Computational Fluid Dynamics (CFD) has been used widely at the initial design stage because of relatively accurate result, time and cost saving, in comparison with experimental approach. This paper presents the results of computational evaluation of propeller open water characteristics for high speed boat, based on steady RANSE flow model with rotating reference frame approach. The effects of mesh density, mesh generation are analyzed in order to improve obtained numerical results. The well-known Gawn propeller series, that is often used for high speed vessel is used to verify and validate the accuracy of case studies. In this study, the authors use the commercial solver Star CCM+ by SIEMENS


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Lucas do Vale Machado ◽  
Antonio Carlos Fernandes

Abstract A very interesting topic in naval architecture is propeller's choice. The engineering team must pay attention to several characteristics of the vessel to properly choose the most effective propeller for that specific application. At the beginning of the Second World War, the diagrams of a well-known propeller, the B-Series propeller, were published. They were tested at the Netherlands Ship Model Basin in Wageningen, and this led to the development of multiple polynomial regression analysis to predict propeller characteristics. Until today this propeller is studied because it possesses satisfactory efficiency and adequate cavitation properties. In addition, its open-water characteristics (KT, KQ, and η0) are easy to obtain. The main goal is to evaluate the usefulness of computational fluid dynamics (CFD) to gather the open-water characteristics, from the design of the propeller on prototype scale, considering cavitation to data analysis and verification and validation of the characteristic curves. A Microsoft Excel tool was developed to draw any B-Series propeller. For this work, the B3.80 was used. CFD results were verified using Richardson Extrapolation and then validated. To this end, the open-water characteristics were used and the numerical results showed a fairly good agreement with the experimental data. The cavitation results were in agreement with the Burrill diagram in most of the cases. The characteristic curves of the cases where cavitation occurred were similar to those shown in the Principles of Naval Architecture (PNA) (Lewis, E. V., 1988, Principles of Naval Architecture, The Society of Naval Architects and Marine Engineers). Other interesting results of this propeller are also shown, e.g., pressure distribution, streamlines.


Author(s):  
Minh Tran ◽  
Jonathan Binns ◽  
Shuhong Chai ◽  
Alexander L Forrest ◽  
Hung Nguyen

This article presents the open water propeller characteristics and the four-quadrant propeller models as applied to a torpedo-shaped underwater vehicle. A series of experiments with a Gavia autonomous underwater vehicle propeller were conducted in the towing tank using a rotor testing apparatus. The purpose of these tests was to measure the propeller thrust and torque under varying flow conditions and then to be used as the basis of the developed propeller models. These mathematical models were constructed using two regression models, a polynomial and a Fourier series. Model coefficients were derived using the method of least squares and a comparison analysis was also conducted to test the robustness of the methodology. Results show that the Fourier series models were able to produce a reasonable and accurate approximation of thrust and torque coefficients with a small number of parameters in the examined condition of this study. The obtained four-quadrant open water characteristics of the autonomous underwater vehicle propeller model would be utilised to improve the system mathematical model for more accurate simulation and controller design, to compare the autonomous underwater vehicle performance equipped with different propulsion units, and to validate computational fluid dynamic results.


2017 ◽  
Vol 79 (7-4) ◽  
Author(s):  
Muhammad Ashraff Ahmad Seri ◽  
Esah Hamzah ◽  
Abdelsalam Ahdash ◽  
Mohd Fauzi Mamat

Recently, self-healing coating is classified as one of the smart coatings which has the ability to heal or repair damage of the coating to prevent further corrosion. The aim of this study is to synthesize the self-healing coatings from polymeric material and evaluate the performance and their corrosion behavior when coated on steel substrates. The corrosion tests were performed using immersion test and salt spray test method at room temperature. The immersion test shows that self-healing coating gives lower corrosion rate compared to pure epoxy paint, with a value of 0.02 and 0.05 mm/year respectively. Also, salt spray test shows similar trend as the immersion test, which is 0.11 and 0.19 mm/year for self-healing coating and pure epoxy paint respectively. While uncoated samples without any protection corroded at 0.89 mm/year. It was also found that the damage on self-healing coating was covered with zeolite from the microcapsules indicating that the self-healing agent was successfully synthesized and could function well. In other words, self-healing coating shows better corrosion resistance compared to the pure epoxy coating on steel substrate.


2015 ◽  
Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Michael Doucet

Mesh and domain optimization strategies for a RANS solver to accurately estimate the open water propulsive characteristics of fixed pitch propellers are proposed based on examining the effect of different mesh and computation domain parameters. The optimized mesh and domain size parameters were selected using Design of Experiments (DoE) methods enabling simulations to be carried out in a limited memory environment, and in a timely manner; without compromising the accuracy of results. A Reynolds-Averaged Navier Stokes solver is used to predict the propulsive performance of a fixed pitch propeller. The predicted thrust and torque for the propeller were compared to the corresponding measurements. A total of six meshing parameters were selected that could affect the computational results of propeller open water performance. A two-level fractional factorial design was used to screen out parameters that do not significantly contribute to explaining the dependent parameters: namely simulation time, propeller thrust and propeller torque. A total of 32 simulations were carried out only to find out that the selected six meshing parameters were significant in defining the response parameters. Optimum values of each of the input parameters were obtained for the DOE technique and additional simulations were run with those parameters. The simulation results were validated using open water experimental results of the same propeller. It was found that with the optimized meshing arrangement, the propeller opens simulation time was reduced by at least a factor of 6 as compared to the generally popular meshing arrangement. Also, the accuracy of propulsive characteristics was improved by up to 50% as compared to published simulation results. The methodologies presented in this paper can be similarly applied to other simulations such as calm water ship resistance, ship propulsion to systematically derive the optimized meshing arrangement for simulations with minimal simulation time and maximum accuracy. This investigation was carried out using STAR-CCM+, a commercial CFD package; however the findings can be applied to any RANS solver.


1989 ◽  
Vol 26 (03) ◽  
pp. 192-201 ◽  
Author(s):  
Neil Bose ◽  
Peter S. K. Lai

Open-water experiments were done on a model of a cycloidal-type propeller with a trochoidal blade motion. This propeller had three blades with an aspect ratio of 10. These experiments included the measurement of thrust and torque of the propeller over a range of advance ratios. Tests were done for forward and reverse operation, and at zero speed (the bollard pull condition). Results from these tests are presented and compared with: a multiple stream-tube theoretical prediction of the performance of the propeller; and a prediction of the performance of a single blade of the propeller, oscillating in heave and pitch, using unsteady small-amplitude hydrofoil theory with corrections for finite amplitude motion, finite span, and frictional drag. At present, neither of these theories gives a completely accurate prediction of propeller performance over the whole range of advance ratios, but a combination of these approaches, with an allowance for dynamic stall of the blades, should lead to a reliable simple theory for overall performance prediction. Application of a propeller of this type to a small ship is discussed. The aim of the design is to produce a lightly loaded propeller with a high efficiency of propulsion.


Author(s):  
Ruoxin Li ◽  
Qing Xiao ◽  
Lijun Li ◽  
Hao Liu

In this work, we numerically studied the steady swimming of a pufferfish driven by the undulating motion of its dorsal, anal and caudal fins. The simulations are based on experimentally measured kinematics. To model the self-propelled fish swimming, a Computational Fluid Dynamics (CFD) tool was coupled with a Multi-Body-Dynamics (MBD) technique. It is widely accepted that deformable/flexible or undulating fins are better than rigid fins in terms of propulsion efficiency. To elucidate the underlying mechanism, we established an undulating fins model based on the kinematics of live fish, and conducted a simulation under the same operating conditions as rigid fins. The results presented here agree with this view by showing that the contribution of undulating fins to propulsion efficiency is significantly larger than that of rigid fins.


Sign in / Sign up

Export Citation Format

Share Document