scholarly journals On the Selection of Optimal Propeller Diameter for a 120-m Cargo Vessel

2020 ◽  
pp. 1-14
Author(s):  
Jennie Andersson ◽  
Robert Gustafsson ◽  
Arash Eslamdoost ◽  
Rickard E. Bensow

In the preliminary design of a propulsion unit, the selection of propeller diameter is most commonly based on open water tests of systematic propeller series. The optimum diameter obtained from the propeller series data is, however, not considered to be representative for the operating conditions behind the ship, instead a slightly smaller diameter is often selected. We have used computational fluid dynamics to study a 120-m cargo vessel with an integrated rudder bulb-propeller hubcap system and a four-bladed propeller series, to increase our understanding of the hydrodynamic effects influencing the optimum. The results indicate that a 3-4% smaller diameter is optimal in behind conditions in relation to open water conditions at the same scale factor. The reason is that smaller, higher loaded propellers perform better together with a rudder system. This requires that the gain in transverse kinetic energy losses thanks to the rudder overcomes the increase in viscous losses in the complete propulsion system.

2018 ◽  
Author(s):  
Jennie Andersson ◽  
Robert Gustafsson ◽  
Arash Eslamdoost ◽  
Rickard E. Bensow

In the preliminary design of a propulsion unit the selection of propeller diameter is most commonly based on open water tests of systematic propeller series. The optimum diameter obtained from the propeller series data is however not considered to be representative for the operating conditions behind the ship, instead a slightly smaller diameter is often selected. We have used computational fluid dynamics (CFD) to study a 120m cargo vessel with an integrated rudder bulb-propeller hubcap system and a 4-bladed propeller series, to increase our understanding of the hydrodynamic effects influencing the optimum. The results indicate that a 3-4 % smaller diameter is optimal in behind conditions in relation to open water conditions at the same scale factor. The reason is that smaller, higher loaded propellers perform better together with a rudder system. This requires that the gain in transverse kinetic energy losses thanks to the rudder overcomes the increase in viscous losses in the complete propulsion system.


Author(s):  
Adam Kozakiewicz ◽  
Stanislaw Jóźwiak ◽  
Przemysław Jóźwiak ◽  
Stanisław Kachel

The structural and strength analysis of the material used to construct such an important engine element as the turbine is of great significance, both at the design stage as well as during tests and expertises related to emergency situations. Bearing in mind the conditions above mentioned, the paper presents the results of research on the chemical composition, morphology and phased structure of the metallic construction material used to produce the blades of the high and low pressure turbine of the RD-33 jet engine, which is the propulsion unit of the MiG-29 aircraft. The data obtained as a result of the material tests of the blades allowed, on the basis of the analysis of chemical composition and phased structure, to determine the grade of the alloy used to construct the tested elements of the jet engine turbine. The structural stability of the material was found to be lower in comparison with engine operating conditions, which manifested itself as a clear decrease in the resistance properties of the blade material. The results obtained can be used as a basis for analyzing the life span of an object or a selection of material replacements, which enable to produce the analyzed engine element.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 336
Author(s):  
Adam Kozakiewicz ◽  
Stanisław Jóźwiak ◽  
Przemysław Jóźwiak ◽  
Stanisław Kachel

The structural and strength analysis of the materials used to construct an important engine element such as the turbine is of great significance, at both the design stage and during tests and training relating to emergency situations. This paper presents the results of a study on the chemical composition, morphology, and phased structure of the metallic construction material used to produce the blades of the high- and low-pressure turbines of the RD-33 jet engine, which is the propulsion unit of the MiG-29 aircraft. On the basis of an analysis of the chemical composition and phased structure, the data obtained from tests of the blade material allowed the grade of the alloy used to construct the tested elements of the jet engine turbine to be determined. The structural stability of the material was found to be lower in comparison with the engine operating conditions, which was shown by a clear decrease in the resistance properties of the blade material. The results obtained may be used as a basis for analyzing the life span of an object or a selection of material replacements, which may enable the production of the analyzed engine element.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

This paper introduces a new approach for the preliminary design and aerothermal analysis of centrifugal impellers using a relative diffusion effectiveness parameter. The relative diffusion effectiveness is defined as the ratio of the achieved diffusion to the maximum available diffusion in an impeller. It represents the quality of the relative diffusion process in an impeller. This parameter is used to evaluate impeller performance by correlating the relative diffusion effectiveness with the impeller isentropic efficiency using the experimental data acquired on a single-stage centrifugal compressor (SSCC). By including slip, which is appropriate considering it is an inviscid effect that should be included in the determination of maximum available diffusion in the impeller, a linear correlation between impeller efficiency and relative diffusion effectiveness resulted for all operating conditions. Additionally, a new method for impeller preliminary design was introduced using the relative diffusion effectiveness parameter, in which the optimal design is selected to maximize relative diffusion effectiveness. While traditional preliminary design methods are based on empirical loss models or empirical knowledge for selection of diffusion factor (DF) in the impeller, the new method does not require any such models, and it also provides an analytical approach for the selection of DF that gives optimal impeller performance. Validation of the method was performed using three classic impeller designs available in the open literature, and very good agreement was achieved. Furthermore, a sensitivity study shows that the method is robust in that the resulting flow angles at the impeller inlet and exit are insensitive to a wide range of blockage factors and various slip models.


Author(s):  
Jude Iyinbor

The optimisation of engine performance by predictive means can help save cost and reduce environmental pollution. This can be achieved by developing a performance model which depicts the operating conditions of a given engine. Such models can also be used for diagnostic and prognostic purposes. Creating such models requires a method that can cope with the lack of component parameters and some important measurement data. This kind of method is said to be adaptive since it predicts unknown component parameters that match available target measurement data. In this paper an industrial aeroderivative gas turbine has been modelled at design and off-design points using an adaptation approach. At design point, a sensitivity analysis has been used to evaluate the relationships between the available target performance parameters and the unknown component parameters. This ensured the proper selection of parameters for the adaptation process which led to a minimisation of the adaptation error and a comprehensive prediction of the unknown component and available target parameters. At off-design point, the adaptation process predicted component map scaling factors necessary to match available off-design point performance data.


2019 ◽  
Vol 22 (2) ◽  
pp. 159-172
Author(s):  
Arkadiusz Mroczek

The fast growth of the service sector is one of the characteristic features of the contemporary economy. Amongst other CEE countries, Poland is one of the emerging locations for this sector. The aim of the paper is to examine and compare the business service sector in India, Ireland and Poland. Both India and Ireland are exceptional locations for this industry, so comparing the state and operating conditions in Poland with those countries can be insightful. A literature study is used to determine the motives of companies undertaking offshore investments, upon which a selection of location factors is made. In the empirical part, those factors are analyzed in a descriptive way. This allows us to draw conclusions concerning this sector in Poland. This country, to some extent, possesses selected positive features of both India and Ireland, which explains the current growth of the sector.


2021 ◽  
pp. 172-181
Author(s):  
Oksana Y. Vasileva ◽  
Marina V. Nikulina Nikulina ◽  
Juri I. Platov Platov

The article deals with the problem of selecting efficient ships by the feasibility study in which brake power, main dimensions, payload, speed and fuel consumption are determined. The necessity of using the proposed selection at the initial stage of the ship's design is justified; the problems that arise at the present time are denoted. The purpose of the article is to propose a criterion for the selection of efficient vessels, "tied" to the operating conditions, based on the marginal cost of the ship. A method for its determination is presented. At the same time, annual revenues and operating costs should be determined by modern methods of business planning for the operation of the fleet. When searching for the parameters of the ship, the optimal fuel consumption is determined. The rest of the costs can be found according to the coefficients "tied" to the fuel consumption and calculated on the basis of existing prototypes. The results of calculations by the proposed method are shown; its merits and opportunities for improvement are noted with the availability of relevant information. The conclusion is made about the convenience and applicability of the proposed option for selecting efficient ship for the feasibility study based on optimization methods for determining the parameters of vessels under conditions of a high level of use of information technologies.


2001 ◽  
Vol 38 (02) ◽  
pp. 92-94
Author(s):  
Huseyin Yilmaz ◽  
Mesut Giiner

In this study, a formula is presented to estimate cross curves of cargo vessels and to predict statical stability at the preliminary design stage of the vessel. The predictive technique is obtained by regression analysis of systematically varied cargo vessel series data. In order to achieve this procedure, some cargo vessel forms are generated using Series-60. The mathematical model in this predictive technique is constructed as a function of design parameters such as length, beam, depth, draft, and block coefficient. The prediction method developed in this work can also be used to determine the effect of specific hull form parameters and the load conditions on stability of cargo vessels. The present method is applied to a cargo vessel and then the results of the actual ship are compared with those of regression values.


Sign in / Sign up

Export Citation Format

Share Document