Ultimate Strength and Effective Width Formulations for Ship Plating Subject to Combined Axial Load, Edge Shear, and Lateral Pressure

2000 ◽  
Vol 44 (04) ◽  
pp. 247-258 ◽  
Author(s):  
Jeom Kee Paik ◽  
Anil K. Thayamballi ◽  
Bong Ju Kim

The aim of the present study is to develop closed-form formulations for the ultimate strength of simply supported steel plating subject to a combination of longitudinal axial load, edge shear, and lateral pressure. The post-weld initial imperfections (initial deflections and residual stresses) are included in the strength formulations as parameters of influence. By solving the equilibrium and compatibility governing differential equations of large-deflection plate theory, the membrane stress distribution inside the plating under axial and lateral pressure loads is formulated in closed form. The ultimate strength formulation for plating under axial load and lateral pressure is then derived under the assumption that the ultimate limit state is reached if the plate edges yield. An empirical formula for the plate ultimate shear strength is suggested based on numerical FE solutions. A relevant ultimate strength relationship between axial load and edge shear is then proposed by combining the two sets of the ultimate strength formulations. As another contribution, the effective width formulation for plating under combined axial compression and edge shear which allows for the shear lag effect caused by lateral pressure as well as the influence of post-weld initial imperfections is developed. The validity of the proposed ultimate strength formulations is shown by comparing with experimental results and nonlinear finite-element analyses. Modeling uncertainty of the developed plate ultimate strength formula against the experimental and numerical results is studied in terms of bias and coefficients of variation.

2001 ◽  
Vol 38 (01) ◽  
pp. 9-25
Author(s):  
Jeom Kee Paik ◽  
Anil K. Thayamballi ◽  
Bong Ju Kim

The aim of the present study is to develop more advanced design formulations for the ultimate strength of ship plating than available at present. Plate ultimate strength subject to any combination of the following four load components—longitudinal compression/tension, transverse compression/tension, edge shear, and lateral pressure loads—is addressed. The developed formulations are designed to be more sophisticated than existing theoretically based simplified methods. The influence of post-weld initial imperfections in the form of initial deflections and residual stresses is taken into account. It has been previously recognized that a single ultimate strength interaction equation cannot successfully represent the ultimate limit state of long and/or wide plating under all possible combinations of load components involved. This is due to the fact that the collapse behavior of the long and/or wide plating depends primarily on the predominant load components, implying that more than one strength interaction formulations may be needed to more properly predict the plate ultimate limit state. In this regard, the present study derives three sets of ultimate strength formulations for the long and/or wide plating under the corresponding primary load by treating lateral pressure as a secondary dead load. The ultimate strength interaction formula under all of the load components involved is then derived by a relevant combination of the individual strength formulas. The validity of the proposed ultimate strength equations is studied by comparison with nonlinear finite-element analyses and other numerically based solutions.


1997 ◽  
Vol 41 (04) ◽  
pp. 301-317
Author(s):  
Jeom K. Paik ◽  
Anil K. Thayamballi ◽  
Min S. Chun

The objectives of the present study are to obtain experimental data on collapse strength of steel corrugated bulkhead models and also to develop a simple analytical formulation for ultimate strength useful in the design of corrugated bulkheads under static lateral pressure. Collapse tests on nine mild steel corrugated bulkhead models having five bays of corrugations are carried out, varying the corrugation angle, the plate thickness and the type of loading (axial compression and/or lateral pressure). Using the test data, the characteristics of the collapse mechanism for corrugated bulkheads are investigated. For purposes of rapid first cut estimates of strength, a new and simple analytical formulation for predicting the ultimate strength of corrugated bulkheads under hydrostatic pressure is derived based on an assumed stress distribution over the corrugation cross section at the ultimate limit state. The modeling error associated with the new formulation is established by comparing its predictions with the experimental results. The development of ultimate strength based design guidelines and the effect of design parameters such as the corrugation angle on ultimate strength of a corrugated bulkhead are then discussed. All experimental information and strength data are tabulated, which is a benefit in itself.


2001 ◽  
Vol 45 (02) ◽  
pp. 111-132 ◽  
Author(s):  
Jeom Kee Paik ◽  
Owen F. Hughes ◽  
Alaa E. Mansour

The aim of this paper is to develop an advanced ultimate strength formulation for ship hulls under vertical bending moment. Since the overall failure of a ship hull is normally governed by buckling and plastic collapse of the deck, bottom, and sometimes the side shell stiffened panels, it is of crucial importance to accurately calculate the ultimate strength of stiffened panels in deck, bottom and side shell for more advanced ultimate strength analyses. In this regard, the developed formulation is designed to be more sophisticated than previous simplified theoretical methods for calculating the ultimate strength of stiffened panels under combined axial load, in-plane bending and lateral pressure. Fabrication-related initial imperfections (initial deflections and residual stresses) and potential structural damage related to corrosion, collision, or grounding are included in the panel ultimate strength calculations as parameters of influence. All possible collapse modes involved in collapse of stiffened panels, including overall buckling collapse, column or beam-column type collapse (plate or stiffener induced collapse), tripping of stiffeners and local buckling of stiffener web, are considered. As illustrative examples, the paper investigates and discusses the sensitivity of parameters such as lateral pressure, fabrication-related initial imperfections, corrosion, collision and grounding damage on the ultimate strength of a typical Cape size bulk carrier hull under vertical bending.


Author(s):  
Masayuki Haraguchi ◽  
Masae Kido ◽  
Keigo Tsuda

The objective of this study is to examine the ultimate strength of CFT columns. The range of the axial load ratio and the slenderness ratio in which CFT beam-columns reach the full plastic moment are examined on the basis of the strength formulas specified by AIJ Recommendation for Limit State Design of Steel Structures. The CFT columns are subjected to the constant axial compressive force and the monotonic moment at the one end, as the analytical parameters the axial load ratio and slenderness ratio are selected. The analysis is carried out by the shooting method. Bending moment-rotational angle relationships are calculated by the shooting method and the maximum strengths of CFT columns are obtained. When the value obtained by multiplying the axial load ratio and the second power of the slenderness ratio is 0.05, the maximum strength reach 95% of the full plastic moment under the condition that the axial load ratio value is less than or equal to 0.75. When the value obtained by multiplying the axial load ratio and the second power of the slenderness ratio is 0.1, the maximum strength reach 95% of the full plastic moment under the condition that the axial load ratio value is less than or equal to 0.5.


2009 ◽  
Vol 6 (6) ◽  
pp. 505-521 ◽  
Author(s):  
V. Dias da Silva ◽  
M.H.F.M. Barros ◽  
E.N.B.S. Julio ◽  
C.C. Ferreira

2006 ◽  
Vol 50 (03) ◽  
pp. 231-238
Author(s):  
Jeom Kee Paik ◽  
Y. V. Satish Kumar

The aim of the present paper is to investigate the ultimate strength characteristics of a longitudinally stiffened panel with cracking damage and under axial compressive or tensile loads. A series of nonlinear finite element analyses are undertaken with varying the size and location of cracking damage. A relevant theoretical model for predicting the ultimate strength of the stiffened panel with cracking damage is studied. The insights and results developed from the present study will be very useful for the ultimate limit state-based risk or reliability assessment of aging steel plated structures with cracking damage.


2020 ◽  
Vol 8 (8) ◽  
pp. 605 ◽  
Author(s):  
Do Kyun Kim ◽  
Su Young Yu ◽  
Hui Ling Lim ◽  
Nak-Kyun Cho

This research aims to study the ultimate limit state (ULS) behaviour of stiffened panel under longitudinal compression by a non-linear finite element method (NLFEM). There are different types of stiffeners mainly being used in shipbuilding, i.e., T-bar, flat-bar, and angle-bar. However, this research focuses on the ultimate compressive strength behaviour of flat-bar stiffened panel. A total of 420 reliable scenarios of flat-bar stiffened panel were selected for numerical simulation by the ANSYS NLFEM. The ultimate strength behaviours obtained were used as data for the development of closed form shape empirical formulation. Recently, our group proposed an advanced empirical formulation for T-bar stiffened panel, and the applicability of the proposed formulation to flat-bar stiffened panel is confirmed by this study. The accuracy of the empirical formulation obtained for flat-bar stiffened panel was validated by finite element (FE) simulation results of statistical analysis (R2 = 0.9435). The outcome obtained will be useful for ship structural designers in predicting the ultimate strength performance of flat-bar type stiffened panel under longitudinal compression.


Author(s):  
Jung Han Kim ◽  
Min Kyu Kim ◽  
In-Kil Choi

Recently, a base isolation system used to be introduced for the seismic safety of nuclear power plants. The isolation system should keep its function over the design level earthquake with a high confidence like any other equipment in nuclear power plants. The seismic response of isolators by the extended design level earthquakes should be controlled not to exceed the ultimate limit state of it. In this study, lead-rubber bearings (LRBs) were tested. The small scale test specimen of a LRB had 550 mm diameter and the full scale was 1,500 mm diameter. The displacement controlled horizontal displacements were applied to the specimens with a constant vertical load in a test. The small scale model was tested under the various vertical load conditions to define the failure mode when the compressive force is excessive. In this test, the shear fracture by a large horizontal displacement with a relatively low axial load around the design axial load and the buckling fracture by a high axial load with a small effective area resisting the axial force were compared. The full scale model was tested to understand various characteristics such as the dependency of strain rate, the function of excitation displacement and the bidirectional behavior on the two-dimensional horizontal plane. As an experimental result, the behaviors of isolators under the ultimate limit state were investigated and the considerations for the prototype test of isolation devices were discussed.


Sign in / Sign up

Export Citation Format

Share Document