scholarly journals Simulation of the Maneuverability of Inland Waterway Tows

1978 ◽  
Vol 15 (01) ◽  
pp. 27-34
Author(s):  
George L. Petrie

A mathematical model has been developed to simulate the motion of a barge and towboat flotilla maneuvering through an inland waterway channel. The formulation of the mathematical model, including the hydrodynamic force representations and the rudder and propeller control algorithms, and its implementation in a digital computer program are described. Potential applications for utilization of the model are discussed, and some typical results are given.

2019 ◽  
Vol 19 (1) ◽  
pp. 93-99
Author(s):  
V Zagrevskiy ◽  
O Zagrevskiy

Aim. The article deals with developing a computer program to simulate the movement of the object with a given initial and final speed and fixed travel time. Materials and methods. The analysis, as a method of biomechanics, allows us to assess the biomechanical state of the athlete in real sports exercises. The function of motion synthesis is the ability to predict the trajectory and behavior of the biomechanical system at specified reference points of the phase structure of the simulated motion. The article deals with one of the methods of biomechanical synthesis of movements: synthesis of control of the final state of biomechanical systems, based on the reduction of finite control to a given program control after attenuation of the transient component of acceleration. The mathematical description of the object motion is based on the known law of finite control with feedback. Integration of the mathematical model constructed in the form of the differential equation of the second order was carried out by one of the numerical methods of integration: Runge–Kutta method of the fourth order of accuracy. Consideration of the method is based on a mathematical apparatus describing the motion of a material point, which can be represented by a common center of mass of a biomechanical system, a joint, a center of mass of a segment, etc. Results. The mathematical model of the motion of a material point with the given kinematic parameters of motion at the initial and final moments is implemented in a computer program in the Visual Basic 2010 language environment based on the integrated development environment Visual Studio Express 2013. The output provides numerical and visual support for simulation results. Conclusion. It is shown that the developed computer model of the method always implements the goal of motion: to transfer an object from a given initial state by speed to a given final state for a fixed time of movement.


2009 ◽  
Vol 16-19 ◽  
pp. 1278-1282
Author(s):  
Xiang Wei Kong ◽  
Jing Zhang ◽  
Meng Hua Niu

This paper investigated the feature of pre-shaving hob contour and the generated gear tooth profile. By tooth generation method, a complete geometry of the gear tooth can be mathematically derived in terms of the design parameters of the pre-shaving hob cutter. The mathematical model consisted of equations describing the generated fillet and involute profiles. The degree of undercutting and the radii of curvatures of a fillet were investigated by considering the model. Finally, a computer program for generating the profile of the gear teeth was developed by simulating the cutting methods. The methods proposed in this study were expected to be a valuable guidance for pre-shaving hob designers and manufacturers.


2009 ◽  
Vol 13 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Mladen Stojiljkovic ◽  
Branislav Stojanovic ◽  
Jelena Janevski ◽  
Gradimir Ilic

The mathematical model of unsteady one-dimensional gas to particles heat transfer for non-isothermal fluidized bed with periodic heating of solid particles has been described. The method of numerical solution of governing differential equations, the algorithm and the computer program, have been presented. By using mathematical model and computer program, the temperature profiles for interstitial gas, gas in bubbles, and solid particles along the height of fluidized bed in function of time, have been determined. The results obtained on the basis of prediction method are compared to the experimental results of the authors; the satisfactory agreement has been found for interstitial gas temperature and solid particle temperature. On the basis of this comparison, the mathematical model has been verified.


1968 ◽  
Vol 90 (4) ◽  
pp. 701-706 ◽  
Author(s):  
A. A. Liepins

A mathematical model for the simulation of railroad freight car rocking is presented. The equations of the model are developed into a digital computer program. The model response is validated by two series of test results, and the model is considered reliable for engineering predictions.


2021 ◽  
pp. 1-12
Author(s):  
Nitin D. Thulkar ◽  
Satoru Yamaguchi

Abstract Leg placement and removal are the two most critical operational modes for dynamically positioned jack-ups when working close to an offshore asset. Any positional deviation may lead to collision and damage to the asset. The industry operates with a weak link between the dynamic positioning (DP) system and the jacking system. Current DP systems operate without any sensors identifying the hydrodynamic force variations on the legs and spudcans, which vary between different leg and spudcan designs. When the spudcan is near to the sea bottom, the hydrodynamic force must be reported to avoid large positional deviations driven by the DP system. This article promotes a mechanism to measure these forces using Computational Fluid Dynamics (CFD) analysis to analyze the jack-up behavior, when the spudcan assembly is operating close to the sea bottom. Introduction A jack-up’s dynamic positioning (DP) control system requires minimum 23–30 minutes for the mathematical model to learn the vessel’s hydrodynamic behavior and response to the environment. Although when moving between locations, DP jack-up vessels provide time for the DP model to learn the hydrodynamic behavior, the spudcan that holds the vessel position and headings does not allow the mathematical model to learn. The residual current remains constant until the spudcan is in the seabed. As a result, the DP mathematical model-building process does not help the DP system to estimate the additional forces in the form of residual current. Soon after the spudcan detaches from the seabed, the vessel drift occurs because the vessel thrusters’ response need a rapid response of thrust and azimuth (directions). The DP system manufacturers currently use a sensorless approach to account for the hydrodynamic forces on the legs and spudcans to build a factor into the mathematical model. The jack-up DP system addresses two simultaneous forces on the legs. The leg element in the air is subject to aerodynamic effects and the leg and spudcan elements in the water are subject to hydrodynamic effects. DP systems currently use drag coefficients (Cd) to compute drag forces, however the hydrodynamic force variations during the complete lowering and raising processes are never completely considered. This weak link in the overall operation leads to positional error and is generally unrecognized by the vessel operators. The risk falls to DP officer and the jacking master to handle. The DP and jacking simultaneous operations mode (SIMOPS) may easily last between 15 and 90 minutes, depending on jacking speed, operational water depth, and field procedures, on approach to the asset. The area of operation is close to the asset, which increases the risk of collision with the asset. Most of the studies on jack-up vessels focus on impact force acting on the leg during touchdown or penetrations, such as Elkadi et al. (2014) and Kreuzer et al. (2014).


2000 ◽  
Vol 6 (4) ◽  
pp. 262-267
Author(s):  
Algimantas Krenevičius ◽  
Kęstutis Vislavičius

A method of increasing the fatigue durability of a bolt joint is considered. It is based on the position of the nut with respect to the bolt. Turning the nut causes its threads to be in contact with different threads of the bolt during sequential periods of use. The thread of the bolt which experiences the highest loading is in contact with the first (most dangerous) thread of the nut. With further nut turns, the bolt thread experiences less loading because of the contact with another (less dangerous) threads of the nut. Reducing the loading in this way can increase the fatigue durability. The nut position with respect to the bolt can be controlled using different heights of washer-bushing. The durability calculation is based on the fatigue curve for the bolt joint when it is tested without turning the nut. The sum of damage is calculated for all points of the bolt thread which are in contact with the first turn of the nut for any loading period. According to the Miner's rule, fatigue failure occurs when the sum of damage is equal to one. The mathematical model for calculating the maximum fatigue durability of bolt joint is given. It is assumed that the height of washer-bushing, the number of turns of the nut and the fatigue curve for the threaded bolt joint are known. The survival condition is that for any point on the bolt, the sum of damage after the last loading period must be less than one. A personal computer program for the fatigue durability calculation is prepared, and some example problems are solved. An analysis of the results is presented.


2011 ◽  
Vol 62 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Mohammad Sharifian ◽  
Mohammad Feyzi ◽  
Mehran Sabahi ◽  
Meysam Farrokhifar

A New Soft Starting Method for Wound-Rotor Induction Motor Starting of a three-phase Induction motor using a starter rheostat in rotor circuit has some disadvantages. A new method for starting of a three-phase motor by using a parallel combination of resistors, self-inductors and capacitors in rotor circuit is proposed in this paper. The proposed method ensures the soft and higher starting torque as well as limited starting current as compared to shorted rotor method. The characteristic curves for both methods (shorted rotor and rotor with added elements) are provided. The mathematical model based on the steady-state equivalent circuit of the induction motor is expanded in frequency domain and the required computer program is prepared using an optimization method. The values for added elements to rotor circuit are calculated in such a way that minimum starting time considering current and torque limitations are achieved.


2020 ◽  
Vol 24 (4) ◽  
pp. 11-18
Author(s):  
Dobrosław Cieślewicz

The mathematical model is a simplified representation of certain phenomena, which takes into account only the essential features. Nowadays, congested road infrastructures are becoming a growing problem, especially in larger urban centres. This problem can be somewhat reduced by using advanced control algorithms. This article attempts to control the traffic flow on a macroscopic scale. For this purpose, a discrete, nonlinear mathematical model was adopted. Using the MATLAB programming environment, a control system for a small communication network was developed and optimised. Then, assuming a sample scenario, simulation studies were conducted for this network.


Sign in / Sign up

Export Citation Format

Share Document