Computerized Tooth Profile Generation and Undercut Analysis of Gears Manufactured With Pre-Shaving Hobs

2009 ◽  
Vol 16-19 ◽  
pp. 1278-1282
Author(s):  
Xiang Wei Kong ◽  
Jing Zhang ◽  
Meng Hua Niu

This paper investigated the feature of pre-shaving hob contour and the generated gear tooth profile. By tooth generation method, a complete geometry of the gear tooth can be mathematically derived in terms of the design parameters of the pre-shaving hob cutter. The mathematical model consisted of equations describing the generated fillet and involute profiles. The degree of undercutting and the radii of curvatures of a fillet were investigated by considering the model. Finally, a computer program for generating the profile of the gear teeth was developed by simulating the cutting methods. The methods proposed in this study were expected to be a valuable guidance for pre-shaving hob designers and manufacturers.

2012 ◽  
Vol 479-481 ◽  
pp. 953-956
Author(s):  
Guo Xing Sun ◽  
Chuan Qiong Sun ◽  
Qiang Liu

According to the principles of engagement and the mathematical model of non-circular gear tooth profile, the tooth profile of non-circular gear is draw. Then the three-dimensional model of the non-circular gear is created in Pro/E three-dimensional software to provide the basis for a non-circular gear motion analysis, dynamic analysis and finite element analysis.


2012 ◽  
Vol 184-185 ◽  
pp. 789-792
Author(s):  
Bing Li ◽  
Yu Lan Wei ◽  
Meng Dan Jin ◽  
Ying Ying Fan

Put forward a method that use scatter points which got in different places to measure the involution cylindrical gears, give a mathematical model that use the discrete points to sure the total deviation of gear tooth profile. The experience results show that this way is of high precision in measurement points, measurement an error data processing less intervention, etc.


2019 ◽  
Vol 19 (1) ◽  
pp. 93-99
Author(s):  
V Zagrevskiy ◽  
O Zagrevskiy

Aim. The article deals with developing a computer program to simulate the movement of the object with a given initial and final speed and fixed travel time. Materials and methods. The analysis, as a method of biomechanics, allows us to assess the biomechanical state of the athlete in real sports exercises. The function of motion synthesis is the ability to predict the trajectory and behavior of the biomechanical system at specified reference points of the phase structure of the simulated motion. The article deals with one of the methods of biomechanical synthesis of movements: synthesis of control of the final state of biomechanical systems, based on the reduction of finite control to a given program control after attenuation of the transient component of acceleration. The mathematical description of the object motion is based on the known law of finite control with feedback. Integration of the mathematical model constructed in the form of the differential equation of the second order was carried out by one of the numerical methods of integration: Runge–Kutta method of the fourth order of accuracy. Consideration of the method is based on a mathematical apparatus describing the motion of a material point, which can be represented by a common center of mass of a biomechanical system, a joint, a center of mass of a segment, etc. Results. The mathematical model of the motion of a material point with the given kinematic parameters of motion at the initial and final moments is implemented in a computer program in the Visual Basic 2010 language environment based on the integrated development environment Visual Studio Express 2013. The output provides numerical and visual support for simulation results. Conclusion. It is shown that the developed computer model of the method always implements the goal of motion: to transfer an object from a given initial state by speed to a given final state for a fixed time of movement.


Author(s):  
Sergey Fedorovich Jatsun ◽  
Andrei Vasilevich Malchikov

This chapter describes various designs of multilink mobile robots intended to move inside the confined space of pipelines. The mathematical model that describes robot dynamics and controlled motion, which allows simulating different regimes of robot motion and determining design parameters of the device and its control system, is presented. The chapter contains the results of numerical simulations for different types of worm-like mobile robots. The experimental studies of the in-pipe robots prototypes and their analyses are presented in this chapter.


Author(s):  
El-Sayed Aziz ◽  
C. Chassapis

Abstract A methodology for the analysis of load distribution and contact stress on gear teeth, which utilizes a combination of closed form solutions and two-dimensional finite element methods, within a constraint-based knowledge-based environment, is presented. Once the design parameters are specified, the complete process of generating the analysis model, starting from the determination of the coordinates of the tooth profile, the creation of a sector of the mating gear teeth, automatic mesh generation, boundary conditions and loading, is totally automated and transparent to the designer. The effects of non-standard geometry, load sharing on the contact zone, friction and root stresses are easily included in the model. The Finite Element Method (FEM) based results compare favorably with those obtained from closed form solutions (AGMA equations and classical Hertzian contact solution). The advantage of the approach rests in the ability to modify any of the gear design parameters such as diametral pitch, tooth profile modification etc., in an automated manner along with obtaining a better estimation of the risks of failure of the gear design on hand. The procedure may be easily extended to other types of gearing systems.


2013 ◽  
Vol 535-536 ◽  
pp. 271-274
Author(s):  
Jeongsuk Lim ◽  
Sunghoon Kang ◽  
Young Seon Lee

The dimensional change of tooth profile by heat treatment of helical gear was investigated by experimental and numerical approaches. Especially, the three-dimensional elasto-plastic finite element (FE) simulation was adopted to analyze the elastic deformation during load, unloading, ejecting of workpiece. Quenching simulation was also carried out to investigate the change of tooth profile on the forged gear. In experiments, the amount of elastic deformation of the forged gear was quantitatively determined by comparing the tooth profiles on the forged gear and die. The dimensional change of the forged gear tooth after quenching was also evaluated from the comparision of the cold forged and quenched gear teeth. From experimental works, it was found that the amounts of dimensional changes after forging and quenching of helical gear are 10 and 10 μm, respectively.


2014 ◽  
Vol 21 (2) ◽  
pp. 3-8
Author(s):  
Jan P. Michalski

Abstract The paper presents a method of choosing the optimal value of the cargo ships deadweight. The method may be useful at the stage of establishing the main owners requirements concerning the ship design parameters as well as for choosing a proper ship for a given transportation task. The deadweight is determined on the basis of a selected economic measure of the transport effectiveness of ship - the Required Freight Rate (RFR). The mathematical model of the problem is of a deterministic character and the simplifying assumptions are justified for ships operating in the liner trade. The assumptions are so selected that solution of the problem is obtained in analytical closed form. The presented method can be useful for application in the pre-investment ships designing parameters simulation or transportation task studies.


1973 ◽  
Vol 95 (4) ◽  
pp. 1159-1163 ◽  
Author(s):  
C. N. Baronet ◽  
G. V. Tordion

Using the two-dimensional theory of elasticity and an appropriate transform function, the stress distribution in a gear tooth acted on by a concentrated load has been obtained. Computations were carried out for the 20 and 25-deg pressure angle, standard full-depth system, for numbers of teeth ranging from 20 to 150. The intensities of the maximum static surface stresses along the root fillets are given for different loading positions on the tooth profile. Some of the results are compared with others found in the literature.


1993 ◽  
Vol 115 (1) ◽  
pp. 103-109 ◽  
Author(s):  
R. Agrawal ◽  
G. L. Kinzel ◽  
R. Srinivasan ◽  
K. Ishii

In many mechanical systems, the mathematical model can be characterized by m nonlinear equations in n unknowns. The m equations could be either equality constraints or active inequality constraints in a constrained optimization framework. In either case, the mathematical model consists of (n-m) degrees of freedom, and (n-m) unknowns must be specified before the system can be analyzed. In the past, designers have often fixed the set of (n-m) specification variables and computed the remaining n variables using the n equations. This paper presents constraint management algorithms that give the designer complete freedom in the choice of design specifications. An occurrence matrix is used to store relationships among design parameters and constraints, to identify dependencies among the variables, and to help prevent redundant specification. The interactive design of a torsion bar spring is used to illustrate constraint management concepts.


2020 ◽  
Vol 213 ◽  
pp. 02029
Author(s):  
Baichao Wang ◽  
Xue Zhang ◽  
Litong Zhang ◽  
Xianting Lu

In this paper, a mathematical model of meshing motion of three degree of freedom involute spherical gear pair is constructed. The mathematical model can realize continuous meshing transmission between gear pairs without transmission principle error. Based on the meshing principle and motion analysis of the gear, the tooth profile of the spherical gear is designed by combining the two tooth surfaces of the involute ring gear and the hemispherical bevel gear. According to the conjugate motion relationship of spherical gear pair, a mathematical model of arc tooth surface of hemispherical bevel gear is established, and the mathematical description of the tooth profile of spherical gear is completed by combining the equation of ring tooth surface. It provides the basis and Reference for the meshing design of ball gear.


Sign in / Sign up

Export Citation Format

Share Document