Correlation of Prototype and Model-Scale Wave Wake Characteristics of a Catamaran

2009 ◽  
Vol 46 (01) ◽  
pp. 1-15
Author(s):  
Gregor J. Macfarlane

This paper summarizes an experimental investigation into the correlation of model-scale wave wake measurements against full-scale trial results for a 24-meter long catamaran operating over a range of length Froude numbers. Both full-scale and 1/15th-scale model experiments were conducted over the range of length Froude numbers of approximately 0.3 to 1.0 (full-scale speed range of 6 to 28 knots). The water depth during the experiments was approximately 12 meters, with corresponding depth Froude numbers ranging from subcritical (~0.3), through a transcritical range (~0.8 to 1.1) into low supercritical speeds (up to ~1.3). The results of the investigation confirm that a correlation factor of close to unity be applied when using model-scale experimental data to predict the full-scale height and period of the maximum wave generated by similar catamarans operating within such speed ranges. Consequently, it is expected that the energy of the maximum waves can also be accurately predicted from model-scale data. This paper also provides useful guidance notes for the conduct of full-scale wave wake experiments and highlights some issues regarding the identification of the maximum wave(s) generated when vessels operate at trans and/or supercritical depth Froude numbers.

Author(s):  
John Halkyard ◽  
Senu Sirnivas ◽  
Samuel Holmes ◽  
Yiannis Constantinides ◽  
Owen H. Oakley ◽  
...  

Floating spar platforms are widely used in the Gulf of Mexico for oil production. The spar is a bluff, vertical cylinder which is subject to Vortex Induced Motions (VIM) when current velocities exceed a few knots. All spars to date have been constructed with helical strakes to mitigate VIM in order to reduce the loads on the risers and moorings. Model tests have indicated that the effectiveness of these strakes is influenced greatly by details of their design, by appurtenances placed on the outside of the hull and by current direction. At this time there is limited full scale data to validate the model test results and little understanding of the mechanisms at work in strake performance. The authors have been investigating the use of CFD as a means for predicting full scale VIM performance and for facilitating the design of spars for reduced VIM. This paper reports on the results of a study to benchmark the CFD results for a truss spar with a set of model experiments carried out in a towing tank. The focus is on the effect of current direction, reduced velocity and strake pitch on the VIM response. The tests were carried out on a 1:40 scale model of an actual truss spar design, and all computations were carried out at model scale. Future study will consider the effect of external appurtenances on the hull and scale-up to full scale Reynolds’ numbers on the results.


1940 ◽  
Vol 44 (352) ◽  
pp. 338-349
Author(s):  
A. P. West

During the past few years an extensive amount of experimental data on split flaps has been made available to the aircraft industry, through the publications of aeronautical research laboratories, both in this country and abroad. In general, each publication deals with one particular aspect of the problem, and when the effect of wing flaps on the performance of an aircraft is being estimated a certain amount of difficulty may be experienced in deciding which of the many reports available gives results most readily applicable to the case being considered ; and what allowances, if any, should be made for wing taper, flap cut-out, fuselage, etc.In this report the available data has been analysed with a view to answering these questions, and presented in such a form that it may be readily applied to determine the most probable change in the aerodynamic characteristics of a wing that may be expected from the use of this type of flap.From the appendix an estimate of the accuracy of the method can be obtained, as a comparison with full-scale data is given for lift and drag, and for the other flap characteristics the original curves have been reproduced.


2020 ◽  
Vol 8 (10) ◽  
pp. 745 ◽  
Author(s):  
Dakui Feng ◽  
Bin Ye ◽  
Zhiguo Zhang ◽  
Xianzhou Wang

Estimating ship resistance accurately in different water depths is crucial to design a resistance-optimized hull form and to estimate the minimum required power. This paper presents a validation of a new procedure used for resistance correction of different water depths proposed by Raven, and it presents the numerical simulations of a Kriso container ship (KCS) for different water depth/draught ratios. Model-scale and full-scale ship resistances were predicted using in-house computational fluid dynamics (CFD) code: HUST-Ship. Firstly, the mathematical model is established and the numerical uncertainties are analyzed to ensure the reliability of the subsequent calculations. Secondly, resistances of different water depth/draught ratios are calculated for a KCS scaled model and a full-scale KCS. The simulation results show a similar trend for the change of model-scale and full-scale resistance in different water depths. Finally, the correction procedure proposed by Raven is briefly introduced, and the CFD resistance simulation results of different water depth/draught ratios are compared with the results estimated using the Raven method. Generally, the reliability of the HUST-Ship solver used for predicting ship resistance is proved, and the practicability of the Raven method is discussed.


2013 ◽  
Vol 29 (04) ◽  
pp. 183-190
Author(s):  
Robert E. Cole ◽  
Joseph J. Boza

This article provides experimental results and shows comparisons of 90 sideslip performance of a fully skirted air cushion vehicle using theoretical predictions, 1/12th model scale data, and full-scale data. The goal is to establish a relation among the three data sets and draw conclusions for use in future predictions. First, this article presents results and analysis of tow tank data obtained in late 2008. Then, the Froude scaled data are used to obtain an empirical drag coefficient. A comparison is made between this approach and a theoretical prediction proposed in previous work. An iterative, one dimensional deceleration algorithm is then constructed using the coefficients to predict the deceleration of a full-scale craft having similar skirt characteristics. The predictions are performed for three craft weights and the resulting deceleration rates as a function of Froude number are presented. Data obtained from full-scale testing are then compared with the results of both the model-based algorithm and the theoretical prediction. In general, the model-based simulation overpredicts the deceleration rate for a full-scale craft, whereas the theoretical prediction is more accurate. The model simulation is recomputed using a developed correction factor and is plotted against the theoretical and full-scale deceleration, revealing favorable results. Lastly, a review of the technique is described and recommendations for improvements and following work are provided.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Shanti Bhushan ◽  
Tao Xing ◽  
Frederick Stern

Vortical structures and associated instabilities of appended Athena wetted transom flow in full-scale conditions are studied using DES to explain the source of dominant transom flow frequency, including verification and validation using full-scale experimental data. The results are also compared with model-scale bare and appended hull predictions and experiments. The grid used for the validation is sufficiently fine as it resolves 70% and 91% of the experimental inertial subrange and turbulent kinetic energy values, respectively. The model-scale bare and appended hull resistance predictions compare within 2.5%D and 5.4%D of the experimental data D, respectively. The full-scale appended hull resistance predictions compare within 4.2%D of the extrapolated data using the ITTC line. The averaged comparison error of the full-scale transom wave elevation mean, RMS and dominant frequency predictions and the experimental data is 8.1%D, and the predictions are validated at an averaged 11.2%D interval. The transom wave elevation unsteadiness is attributed to the Karman-like transom vortex shedding as both show the same dominant frequency. The Karman-like instability shows St = 0.148 for the bare hull and St = 0.103 ± 4.4% for model- and full-scale appended hull. The appended hull simulations also predict: horseshoe vortices at the juncture of rudder-hull with St = 0.146 ± 3.9% and strut-hull with St = 0.053 ± 2%; shear layer instability at the strut-hull intersection with St = 0.0067 ± 3%; and unsteady sinkage and trim induced by transom vortex shedding with St = 2.19. The instabilities do not show significant variation on scale, propeller or motions. The bare hull simulation also predicts flapping-like instability in the wake with St = 0.144.


Author(s):  
Michael Lau

There are a variety of model ices and test techniques adopted by model test facilities. Most often, the clients would ask: “How well can you predict the full scale performance from your model test results?” Model-scale/full-scale correlation becomes an important litmus test to validate a model test technique and its results. This paper summarizes the model-scale/full-scale correlation performed on model test data generated at the National Research Council - Ocean, Coastal, and River Engineering’s (NRC-OCRE) test facility in St. John’s. This correlation includes ship performance predictions, i.e., resistance, propulsion and maneuvering. Selected works from NRC-OCRE on the USCGC icebreaker Healy, the CCGS icebreaker Terry-Fox, the CCGS R-Class icebreakers Pierre Radisson and Sir John Franklin and the CCGS icebreaker Louis S. St. Laurent were reviewed and summarized. The model tests were conducted at NRC-OCRE’s ice tank with the correct density (CD) EGADS model ice. This correlation is based on the concept that a “correlation friction coefficient” (CFC) can be used to predict full-scale ship icebreaking resistance from model test data. The CFCs have been compared for correlation studies using good-quality full-scale information for the five icebreaker models in the NRC-OCRE’s model test database. The review has shown a good agreement between NRCOCRE’s model test predictions and full-scale measurements. The resistance and power correlation were performed for five sets of full-scale data. Although there is substantial uncertainty on ice thickness and ice strength within the full scale data sets that contributes to data scattering, the data suggest a conservative estimate can be obtained to address reasonably this uncertainty by increasing the model prediction by 15% that envelopes most data points. Limited correlation for maneuvering in ice was performed for the USCGC icebreaker Healy. Selected test conditions from the sea trials were duplicated for the maneuvering tests and turning diameters were measured from the arcs of partial circles made in the ice tank. Performance predictions were then compared to the full-scale data previously collected. Despite some discrepancy in ice strength and power level between the model tests and sea trial, the model data agree well with the sea trial data except for three outliers. Otherwise, the maneuvering data show a good correlation between the model test and sea trial results.


2021 ◽  
pp. 1-24
Author(s):  
Timur Dogan ◽  
Hamid Sadat-Hosseini ◽  
Frederick Stern

Verification and validation of computational fluid dynamic simulations are performed at model and full scales for the high-speed littoral combat ship (LCS) surface combatant, including the effects of hook, interceptors, and water-jet propulsion. Predictions of the body force thrust, sinkage, and trim use a speed controller for attaining self-propulsion. Two methods for water-jet performance are used: 1) evaluation of forces based on integration of the stress over the wetted area of the hull and water-jet duct, pump casing, and nozzle (integral method) and 2) ITTC (2005) water-jet test procedure (control volume method). The comparison errors at model (resistance, sinkage, and trim) and full (power and trim) scales are satisfactory using both Froude (Fr) scaled model- and full-scale trial data, including the effects of the interceptors and water jets (WJ) on resistance/power, sinkage, and trim. For the model-scale model without WJs, the negative bottom hydrodynamic pressure near the water-jet inlets are observed without and with the hook simulations, and experiments with the hook. The negative bottom vertical force near the water-jet inlets for the simulations without the hook supports Savitsky’s (2014) assertion that semi-displacement monohulls do not exhibit hydrodynamic lift and disproves Giles’ (1992) assertion to the contrary. The hook and interceptors do not affect the pressure distribution significantly near the water-jet inlets. For the full scale model, the WJs induce bow up trim for the simulations and interpolated (between conditions)- and Fr scaled model-scale experiments. The negative bottom pressure and vertical force near the water-jet inlet for the simulations disprove Giles’ (1992) assertion that the WJs provide additional hydrodynamic lift. This is further supported by the comparisons of the vertical force % thrust vs. inlet velocity ratio for the LCS, with results shown in Bulten (2005) for a high-speed motor yacht. Bulten (2005) shows positive vertical force for inlet velocity ratios ≥ 1.25. However, LCS operates in the regime of an inlet velocity ≤ 1.2; thus, consistent with Bulten (2005), the vertical force is negative. The nonlinear effects between the interceptors and WJs are small such that a linear combination can provide a reasonable approximation.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rafael Bardera Mora

Helicopters operations on board ships require special procedures introducing additional limitations known as ship helicopter operational limitations (SHOLs) which are a priority for all navies. This paper presents the main results obtained from the experimental investigation of a simple frigate shape (SFS) which is a typical case of study in experimental and computational aerodynamics. The results obtained in this investigation are used to make an assessment of the flow predicted by the SFS geometry in comparison with experimental data obtained testing a ship model (reduced scale) in the wind tunnel and on board (full scale) measurements performed on a real frigate type ship geometry.


Sign in / Sign up

Export Citation Format

Share Document