A Discussion of Pod Drives and Their Application In the Pleasure Boat Market

2009 ◽  
Author(s):  
Christopher Swanhart

Since being introduced to North America at the Miami Boat Show in 2005, Volvo Penta Inboard Performance System, or IPS has established itself as a leading propulsion choice among pleasure boat owners and builders. Other suppliers are following suit including the Cummins Mercruiser Zeus system. Pod propulsion offers benefits like increased efficiency, better performance, nimble handling, and low noise levels while allowing more people to successfully operate their vessel due to a friendly operator interface. Features of these commercial pod systems that also benefit builders include ease of installation and the integral underwater exhaust which helps to meet CE requirements, for both exhaust and noise levels. Both IPS and Zeus are fully integrated pod propulsion systems. Existing vessels can be retro-fitted with these systems while many new vessels are being designed specifically for IPS or Zeus. Donald L. Blount and Associates provides consulting in regards to IPS integration with existing and new designs and has also been involved with designs employing the Zeus system. The first portion of this paper discusses pod drives, particularly IPS itself. (Because the author has substantially more experience and background with IPS, much of the information herein is IPS specific). General information on IPS and Zeus is offered as well as some operational specifics. The paper then focuses on the application of pod drives in existing and new vessel designs. The discussion includes how hull forms can be evaluated for use with pod drives. A look at the integration of pod systems into various types of pleasure boats (cruiser, day boat, fishing yacht, etc) is also covered including the challenges which exist for each specific vessel type.

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5287
Author(s):  
Hiwa Mahmoudi ◽  
Michael Hofbauer ◽  
Bernhard Goll ◽  
Horst Zimmermann

Being ready-to-detect over a certain portion of time makes the time-gated single-photon avalanche diode (SPAD) an attractive candidate for low-noise photon-counting applications. A careful SPAD noise and performance characterization, however, is critical to avoid time-consuming experimental optimization and redesign iterations for such applications. Here, we present an extensive empirical study of the breakdown voltage, as well as the dark-count and afterpulsing noise mechanisms for a fully integrated time-gated SPAD detector in 0.35-μm CMOS based on experimental data acquired in a dark condition. An “effective” SPAD breakdown voltage is introduced to enable efficient characterization and modeling of the dark-count and afterpulsing probabilities with respect to the excess bias voltage and the gating duration time. The presented breakdown and noise models will allow for accurate modeling and optimization of SPAD-based detector designs, where the SPAD noise can impose severe trade-offs with speed and sensitivity as is shown via an example.


2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis

When selecting a design for an unmanned aerial vehicle, the choice of the propulsion system is vital in terms of mission requirements, sustainability, usability, noise, controllability, reliability and technology readiness level (TRL). This study analyses the various propulsion systems used in unmanned aerial vehicles (UAVs), paying particular focus on the closed-cycle propulsion systems. The study also investigates the feasibility of using helium closed-cycle gas turbines for UAV propulsion, highlighting the merits and demerits of helium closed-cycle gas turbines. Some of the advantages mentioned include high payload, low noise and high altitude mission ability; while the major drawbacks include a heat sink, nuclear hazard radiation and the shield weight. A preliminary assessment of the cycle showed that a pressure ratio of 4, turbine entry temperature (TET) of 800 °C and mass flow of 50 kg/s could be used to achieve a lightweight helium closed-cycle gas turbine design for UAV mission considering component design constraints.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1157 ◽  
Author(s):  
Robert Chebli ◽  
Mohamed Ali ◽  
Mohamad Sawan

We present in this paper a fully integrated low-noise high common-mode rejection ratio (CMRR) logarithmic programmable gain amplifier (LPGA) and chopped LPGA circuits for EEG acquisition systems. The proposed LPGA is based on a rail-to-rail true logarithmic amplifier (TLA) stage. The high CMRR achieved in this work is a result of cascading three amplification stages to construct the LPGA in addition to the lower common-mode gain of the proposed logarithmic amplification topology. In addition, the 1 / f noise and the inherent DC offset voltage of the input transistors are reduced using a chopper stabilization technique. The CMOS 180 nm standard technology is used to implement the circuits. Experimental results for the integrated LPGA show a CMRR of 140 dB, a differential gain of 37 dB, an input-referred noise of 0.754 μ Vrms, a 189 μ W power consumption from 1.8 V power supply and occupies an active area of 0.4 mm 2 .


Author(s):  
G. Bertuccio ◽  
G. De Geronimo ◽  
A. Longoni ◽  
S. Lauxtermann ◽  
K. Runge
Keyword(s):  

Author(s):  
Denis G. Karczub ◽  
Fred W. Catron ◽  
Allen C. Fagerlund

In a blow-down situation as might occur at a natural gas processing facility, noise levels are very high and significantly exceed the noise levels one would normally associate with a control valve. As the blow-down operation is an infrequent event, this may be permissible but requires consideration of the duration of these high noise levels to ensure that occupational noise exposure limits and acoustic fatigue limits are not exceeded. Tests of noise levels due to an 8-inch control valve in a 12-inch pipeline under blow-down conditions are compared here with noise level predictions based on the IEC standard. Consideration is also given to the impact of placing an orifice plate downstream of the control valve as is often done to reduce pressure drop across the valve in the expectation that control valve noise levels will be reduced. Simple orifice plates often installed by plant operators to achieve this goal are shown to have an adverse impact, and it is shown that a multi-hole diffuser or low-noise control valve should instead be used.


2011 ◽  
Vol 3 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Srdjan Glisic ◽  
J. Christoph Scheytt ◽  
Yaoming Sun ◽  
Frank Herzel ◽  
Ruoyu Wang ◽  
...  

A fully integrated transmitter (TX) and receiver (RX) front-end chipset, produced in 0.25 µm SiGe:C bipolar and complementary metal oxide semiconductor (BiCMOS) technology, is presented. The front-end is intended for high-speed wireless communication in the unlicensed ISM band of 9 GHz around 60 GHz. The TXand RX features a modified heterodyne topology with a sliding intermediate frequency. The TX features a 12 GHz in-phase and quadrature (I/Q) mixer, an intermediate frequency (IF) amplifier, a phase-locked loop, a 60 GHz mixer, an image-rejection filter, and a power amplifier. The RX features a low-noise amplifier (LNA), a 60 GHz mixer, a phase-locked loop (PLL), and an IF demodulator. The measured 1-dB compression point at the TX output is 12.6 dBm and the saturated power is 16.2 dBm. The LNA has measured noise figure of 6.5 dB at 60 GHz. Error-free data transmission with a 16 quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM) signal and data rate of 3.6 Gbit/s (without coding 4.8 Gbit/s) over 15 m was demonstrated. This is the best reported result regarding both the data rate and transmission distance in SiGe and CMOS without beamforming.


Sign in / Sign up

Export Citation Format

Share Document