scholarly journals MAXIMUM INCREASE OF PENILE CIRCUMFERENCE AS A PARAMETER FOR EVALUATION OF PENILE ERECTILE CAPACITY

1997 ◽  
Vol 88 (9) ◽  
pp. 788-794
Author(s):  
Hideki Adachi ◽  
Yoshikazu Satoh ◽  
Hiroki Horita ◽  
Yoshiaki Kumamoto ◽  
Taiji Tsukamoto
1959 ◽  
Vol XXXII (I) ◽  
pp. 134-141 ◽  
Author(s):  
Niels A. Thorn

ABSTRACT Arginine-, lysine- and leucine-vasopressin, injected i. v. into hydrated rats or dogs caused different patterns of response in that urine osmolality fell much more slowly after the maximum increase following arginine-vasopressin, than after the other two preparations. Using 3 different parameters for antidiuretic response, arginine-vasopressin was somewhat more potent than leucine-vasopressin in both rats and dogs, considerably more potent than lysine-vasopressin in rats, and much more so in dogs.


2017 ◽  
Vol 30 (1) ◽  
pp. 69-82
Author(s):  
T. N. Vinogradova ◽  
I. V. Kravchenko

The article is devoted to the topical issue of tax incentives and control in Russia. We have evaluated effectiveness of these measures in terms of current legislation and identified the main problems encountered during their implementation. Additionally, in this article we have covered major development paths of tax incentives and control in modern conditions to enhance their efficiency and achieve maximum increase in tax payments in budgets of the Russian Federation.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1688 ◽  
Author(s):  
C. Birk Jones ◽  
Matthew Lave ◽  
William Vining ◽  
Brooke Marshall Garcia

An increase in Electric Vehicles (EV) will result in higher demands on the distribution electric power systems (EPS) which may result in thermal line overloading and low voltage violations. To understand the impact, this work simulates two EV charging scenarios (home- and work-dominant) under potential 2030 EV adoption levels on 10 actual distribution feeders that support residential, commercial, and industrial loads. The simulations include actual driving patterns of existing (non-EV) vehicles taken from global positioning system (GPS) data. The GPS driving behaviors, which explain the spatial and temporal EV charging demands, provide information on each vehicles travel distance, dwell locations, and dwell durations. Then, the EPS simulations incorporate the EV charging demands to calculate the power flow across the feeder. Simulation results show that voltage impacts are modest (less than 0.01 p.u.), likely due to robust feeder designs and the models only represent the high-voltage (“primary”) system components. Line loading impacts are more noticeable, with a maximum increase of about 15%. Additionally, the feeder peak load times experience a slight shift for residential and mixed feeders (≈1 h), not at all for the industrial, and 8 h for the commercial feeder.


2021 ◽  
pp. 014459872098303
Author(s):  
Sibo Wang ◽  
Zhiguang Song ◽  
Jia Xia ◽  
Yuan Gao ◽  
YaoPing Wang ◽  
...  

In this study, the methane adsorption capacity of kerogen isolated from the Cambrian, Silurian, and Permian shales and the impact of soluble organic matter (SOM) on the adsorption capacity of these shales were investigated. The results reveal that 1) the adsorption capacity of kerogen varies in a broad range, from 14.48 to 23.22 cm3/g for the Cambrian kerogens, from 15.50 to 36.06 cm3/g for the Silurian kerogens, and from 10.71 to 11.15 cm3/g for the Permian kerogens; 2) the kerogen adsorption accounts for 33.67–70.23% of the total adsorption capacity of these Palaeozoic extracted shales, demonstrating that kerogen is the primary adsorbing substance in shales; 3) the adsorption isotherms of kerogen in highly mature Cambrian and Silurian shales are similar to those of Triassic coal, while the isotherms of kerogen in the relatively immature Permian shales are similar to those of the immature oil shales; and 4) the SOM demonstrates a significant impact on the adsorption capacity of shales as the removal of SOM can cause a maximum increase of 34.29% or a decrease of 23.36% in the total adsorption capacity of shales. However, there is no clear understanding of the impact of SOM on the methane sorption of shales.


Author(s):  
Adnan Alashkar ◽  
Mohamed Gadalla

In this present paper, a performance analysis of an Integrated Solar Rankine Cycle (ISRC) is provided. The ISRC consists of a nanofluid-based Parabolic Trough Solar Collector (PTSC), and a Thermal Energy Storage System (TES) integrated with a Rankine Cycle. The effect of dispersing Copper (Cu) nanoparticles in a conventional heating fluid (Syltherm 800) on the output performance and cost of the ISRC is studied for different volume fractions, and for two modes of operation. The first mode assumes no storage, while the second assumes a storage system with a storage period of 7 hours. For the second mode of operation, the charging and discharging cycles are explained. The results show that the presence of the nanoparticles causes an increase in the overall energy produced by the ISRC for both modes of operation, and also causes a decrease in the Levelized Cost of Electricity (LEC), and an increase in the net savings of the ISRC. When comparing the two modes of operation it is established that the existence of a storage system leads to a higher power generation, and a lower LEC; however the efficiency of the cycle drops. It is seen that the maximum increase in the annual energy output of the ISRC caused by the addition of the nanoparticles is around 3.5%, while the maximum increase in the net savings is around 12.8%.


1984 ◽  
Vol 106 (1) ◽  
pp. 70-78 ◽  
Author(s):  
A. J. Grass ◽  
P. W. J. Raven ◽  
R. J. Stuart ◽  
J. A. Bray

The paper summarizes the results of a laboratory study of the separate and combined effects of bed proximity and large velocity gradients on the frequency of vortex shedding from pipeline spans immersed in the thick boundary layers of tidal currents. This investigation forms part of a wider project concerned with the assessment of span stability. The measurements show that in the case of both sheared and uniform approach flows, with and without velocity gradients, respectively, the Strouhal number defining the vortex shedding frequency progressively increases as the gap between the pipe base and the bed is reduced below two pipe diameters. The maximum increase in vortex shedding Strouhal number, recorded close to the bed in an approach flow with large velocity gradients, was of the order of 25 percent.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mojtaba Nateqi ◽  
Mehran Rajabi Zargarabadi ◽  
Roohollah Rafee

AbstractIn this study, a spray cooling system is experimentally investigated to increase the photovoltaic panel efficiency. Cooling of photovoltaic panels is one of the important parameters that affects the PV panel performance. In this experiment the effects of spray angle, nozzles to PV panel distance, number of nozzles, and pulsating water spray on the PV panel performance are investigated. For this purpose, an experimental setup was made. The spray angles varied from 15° to 50°. The comparison between the spray angles shows that by decreasing the spray angle to 15° increases the electrical efficiency of PV panel to 19.78% and simultaneously the average PV panel temperature decreases from 64 (for non-cooled PV) to 24 °C. Also, nozzle to PV panel distance was changed from 10 to 50 cm. The best result was obtained for the lowest distance by 25.86% increase in power output. Study of various frequency also show that due to the surface evaporation and the intensity of the radiation, increasing the water spraying frequency can increase or decrease the electrical efficiency. The On–Off water spray system results show that the maximum increase in efficiency was obtained with frequency of 0.2 Hz which it was 16.84%. Water consumption also decreased to half.


2021 ◽  
Vol 50 (1) ◽  
pp. 15-19
Author(s):  
Rakesh Punia ◽  
Pavitra Kumari ◽  
Anil Kumar ◽  
AS Rathi ◽  
Ram Avtar

Progression of Alternaria blight disease was measured on two susceptible Indian mustard varieties viz., RH 30 and RH 0749 sown at three different dates. The maximum increase in disease severity was recorded between first weeks of February and last week of February. During this period, the maximum and minimum temperature, relative humidity at morning and evening, average vapour pressure of morning and evening, maximum and bright sunshine hours and wind speed were higher, which resulted in congenial conditions for severe infection by the pathogen. The disease severity was positively correlated with maximum and minimum temperature, average vapour pressure, wind speed, sunshine hours and evaporation, while relative humidity and rainfall negatively correlated with Alternaria blight on both the varieties. A maximum value of area under disease progress curve was observed on cultivar RH 30 (651.1 cm2) as compared to RH 0749 (578.9 cm2), when crop was sown on 9th November.


1989 ◽  
Vol 66 (2) ◽  
pp. 606-612 ◽  
Author(s):  
S. Bellofiore ◽  
D. H. Eidelman ◽  
P. T. Macklem ◽  
J. G. Martin

We examined the effects of elastase-induced emphysema on lung volumes, pulmonary mechanics, and airway responses to inhaled methacholine (MCh) of nine male Brown Norway rats. Measurements were made before and weekly for 4 wk after elastase in five rats. In four rats measurements were made before and at 3 wk after elastase; in these same animals the effects of changes in end-expiratory lung volume on the airway responses to MCh were evaluated before and after elastase. Airway responses were determined from peak pulmonary resistance (RL) calculated after 30-s aerosolizations of saline and doubling concentrations of MCh from 1 to 64 mg/ml. Porcine pancreatic elastase (1 IU/g) was administered intratracheally. Before elastase RL rose from 0.20 +/- 0.02 cmH2O.ml-1.s (mean +/- SE; n = 9) to 0.57 +/- 0.06 after MCh (64 mg/ml). A plateau was observed in the concentration-response curve. Static compliance and the maximum increase in RL (delta RL64) were significantly correlated (r = 0.799, P less than 0.01). Three weeks after elastase the maximal airway response to MCh was enhanced and no plateau was observed; delta RL64 was 0.78 +/- 0.07 cmH2O.ml-1.s, significantly higher than control delta RL64 (0.36 +/- 0.7, P less than 0.05). Before elastase, increase of end-expiratory lung volume to functional residual capacity + 1.56 ml (+/- 0.08 ml) significantly reduced RL at 64 mg MCh/ml from 0.62 +/- 0.05 cmH2O.ml-1.s to 0.50 +/- 0.03, P less than 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document