scholarly journals Evaluation and influence of composts and their organic matter on the growth of spring barley

2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Indrė Višniauskė ◽  
Eugenija Bakšienė ◽  
Romas Mažeika

Pot trial experiments were conducted with the aim of determining organic matter composition and the influence on the growth of spring barley of different types of composts. The plants were grown in 6 l vegetative pots on the experimental site of the LRCAF Agrochemical Research Laboratory. Compost with soil were mixed by the following volume – 10, 20, 30 and 40%. Spring barley was grown for two years – in 2015 and 2016. This experiment investigated green waste and food waste, sewage sludge and biogas production waste. The largest amounts of organic matter, organic and total carbon, and total nitrogen were found in the biogas production waste compost. The minimum contents of organic matter and other nutrients were estimated in the green waste compost. The following biometric measurements on spring barley were taken: plant height, 1 000 grain weight and grain yield. The best growth of barley was in the substrate with biogas production waste in 2015 – plant height 43.7–53.7 cm, 1 000 grain weight 45.6–49.2 g, grain yield per pot 19.1–23.0 g, and the minimum contents were in the green waste substrate. In 2016, the best results were obtained in the substrates with green and food waste compost. The nitrogen content was determined in spring barley grain and straw. In 2015, the total nitrogen content in plant grains and straw was increased by the substrate of biogas production waste, and in 2016 it was increased by the substrate of food waste, sewage sludge and biogas production waste.

2021 ◽  
Vol 13 (3) ◽  
pp. 1109
Author(s):  
Edgar Ricardo Oviedo-Ocaña ◽  
Angélica María Hernández-Gómez ◽  
Marcos Ríos ◽  
Anauribeth Portela ◽  
Viviana Sánchez-Torres ◽  
...  

The composting of green waste (GW) proceeds slowly due to the presence of slowly degradable compounds in that substrate. The introduction of amendments and bulking materials can improve organic matter degradation and end-product quality. However, additional strategies such as two-stage composting, can deal with the slow degradation of green waste. This paper evaluates the effect of two-stage composting on the process and end-product quality of the co-composting of green waste and food waste amended with sawdust and phosphate rock. A pilot-scale study was developed using two treatments (in triplicate each), one being a two-stage composting and the other being a traditional composting. The two treatments used the same mixture (wet weight): 46% green waste, 19% unprocessed food waste, 18% processed food waste, 13% sawdust, and 4% phosphate rock. The traditional composting observed a higher degradation rate of organic matter during the mesophilic and thermophilic phases and observed thermophilic temperatures were maintained for longer periods during these two phases compared to two-stage composting (i.e., six days). Nonetheless, during the cooling and maturation phases, the two treatments had similar behaviors with regard to temperature, pH, and electrical conductivity, and the end-products resulting from both treatments did not statistically differ. Therefore, from this study, it is concluded that other additional complementary strategies must be evaluated to further improve GW composting.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2018 ◽  
Vol 71 ◽  
pp. 644-651 ◽  
Author(s):  
A.E. Maragkaki ◽  
I. Vasileiadis ◽  
M. Fountoulakis ◽  
A. Kyriakou ◽  
K. Lasaridi ◽  
...  

2020 ◽  
Vol 10 (8) ◽  
pp. 2921 ◽  
Author(s):  
Mohsen Parchami ◽  
Steven Wainaina ◽  
Amir Mahboubi ◽  
David I’Ons ◽  
Mohammad J. Taherzadeh

The significant amount of excess sewage sludge (ESS) generated on a daily basis by wastewater treatment plants (WWTPs) is mainly subjected to biogas production, as for other organic waste streams such as food waste slurry (FWS). However, these organic wastes can be further valorized by production of volatile fatty acids (VFAs) that have various applications such as the application as an external carbon source for the denitrification stage at a WWTP. In this study, an immersed membrane bioreactor set-up was proposed for the stable production and in situ recovery of clarified VFAs from ESS and FWS. The VFAs yields from ESS and FWS reached 0.38 and 0.34 gVFA/gVSadded, respectively, during a three-month operation period without pH control. The average flux during the stable VFAs production phase with the ESS was 5.53 L/m2/h while 16.18 L/m2/h was attained with FWS. Moreover, minimal flux deterioration was observed even during operation at maximum suspended solids concentration of 32 g/L, implying that the membrane bioreactors could potentially guarantee the required volumetric productivities. In addition, the techno-economic assessment of retrofitting the membrane-assisted VFAs production process in an actual WWTP estimated savings of up to 140 €/h for replacing 300 kg/h of methanol with VFAs.


2019 ◽  
Vol 37 (5) ◽  
pp. 556-562 ◽  
Author(s):  
Karolina Barcauskaitė

Depending on the origin, the compost produced may contain not only nutrients but also pollutants, such as heavy metals and persistent organic pollutants. It is very important to determine them in soil-improving substances, because persistent organic pollutants show environmental toxic, cancerogenic, mutagenic effects and do not decompose for a long time. The aim of this study was to determine seven polychlorinated biphenyls concentrations in different kinds of composts produced in Lithuania and to evaluate the appliance of these composts in agricultural land. First, before routine analysis was done a gas chromatography with electron-capture detector method was developed. In this study 145 samples of green waste, sewage sludge, cattle manure, food waste, mixed municipal waste, digestate and composts made from mixed municipal waste after mechanical–biological treatment were analysed. Obtained results show that 28% of investigated cattle manure composts (CMCs) and 10.5% of food waste composts (FWCs) were free from polychlorinated biphenyls. Other kinds of composts investigated in this study (green waste compost (GWC), sewage sludge compost (SSC), mixed municipal waste compost (MMWC), mixed municipal waste compost after mechanical biological treatment (MMWCABMT) and digestate (DIG)) were contaminated 100% with polychlorinated biphenyls. Despite the fact that polychlorinated biphenyls were forbidden 25 years ago, their concentration varied from 2.70 to 163.7 µg kg−1 in different kinds of composts produced in Lithuania. According to get an increasing average amount of Σ7 polychlorinated biphenyls, Lithuanian composts were distributed as follows CMC > GWC > DIG > FWC > SSC > MMWCABMT > MMWC.


2020 ◽  
Vol 27 (3) ◽  
pp. 128-134
Author(s):  
Jamie Ka Yan Li

Due to the rising concerns regarding food waste disposal as well as the increasing demand for renewable energy nowadays, a number of European countries have adopted anaerobic co-digestion, a technology that deals with food waste and sewage sludge. As stated in the HKSAR Government’s Policy Address 2016, the feasibility of using existing sewage treatment facilities for co-digestion of food waste and sewage sludge has been under exploration. A trial scheme has been commenced in 2019. This paper aims to compare the efficiency of biogas production and volatile solid reduction in co-digestion of food waste and sewage with mono-digestion in laboratory scale.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1306
Author(s):  
Javier Rodrigo-Ilarri ◽  
María-Elena Rodrigo-Clavero

Municipal solid waste (MSW) landfills are one of the main sources of greenhouse gas emissions. Biogas is formed under anaerobic conditions by decomposition of the organic matter present in waste. The estimation of biogas production, which depends fundamentally on the type of waste deposited in the landfill, is essential when designing the gas capture system and the possible generation of energy. BIOLEACH, a mathematical model for the real-time management of MSW landfills, enables the estimation of biogas generation based on the waste mix characteristics and the local meteorological conditions. This work studies the impact of installing selective organic matter collection systems on landfill biogas production. These systems reduce the content of food waste that will eventually be deposited in the landfill. Results obtained using BIOLEACH on a set of scenarios under real climate conditions in a real landfill located in the Region of Murcia (Spain) are shown. Results demonstrate that actual CH4 and CO2 production depends fundamentally on the monthly amount of waste stored in the landfill, its chemical composition and the availability and distribution of water inside the landfill mass.


2018 ◽  
Vol 76 ◽  
pp. 339-349 ◽  
Author(s):  
Fabrícia M.S. Silva ◽  
Claudio F. Mahler ◽  
Luciano B. Oliveira ◽  
João P. Bassin

Sign in / Sign up

Export Citation Format

Share Document