scholarly journals Karyological and cytogenetic features of conifers in arboretums and parklands

2020 ◽  
Vol 27 ◽  
pp. 299-302
Author(s):  
T. S. Sedel'nikova ◽  
A. V. Pimenov ◽  
E. N. Muratova

Aim. The study of karyological and cytogenetic features of conifers growing under conditions of introduction and increased recreational pressure, to identify biodiversity and solve the problems of population and environmental genetics of representatives of this group of plants. Methods. Classical chromosome research methods with staining with acetohematoxylin were used. Results. In species, forms, and cultivars of conifers from the Pinaceae and Cupressaceae families growing in arboretums and parklands, as well as being components of green spaces in settlements of different geographical regions, variability of chromosome numbers (mixoploidy), the appearance of B chromosomes, high occurrence, and a wide range of chromosomal and meiotic anomalies are discovered. Conclusions. Karyological and cytogenetic studies have shown the presence of karyotypic polymorphism and an increase in the number of various disorders of mitosis and meiosis in conifers when introduced under growing conditions in recreational areas. Keywords: conifers, introduction, chromosome number, chromosomal rearrangements, meiosis disorders.

EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Claudia Paez ◽  
Jason A. Smith

Biscogniauxia canker or dieback (formerly called Hypoxylon canker or dieback) is a common contributor to poor health and decay in a wide range of tree species (Balbalian & Henn 2014). This disease is caused by several species of fungi in the genus Biscogniauxia (formerly Hypoxylon). B. atropunctata or B. mediterranea are usually the species found on Quercus spp. and other hosts in Florida, affecting trees growing in many different habitats, such as forests, parks, green spaces and urban areas (McBride & Appel, 2009).  Typically, species of Biscogniauxia are opportunistic pathogens that do not affect healthy and vigorous trees; some species are more virulent than others. However, once they infect trees under stress (water stress, root disease, soil compaction, construction damage etc.) they can quickly colonize the host. Once a tree is infected and fruiting structures of the fungus are evident, the tree is not likely to survive especially if the infection is in the tree's trunk (Anderson et al., 1995).


2018 ◽  
Vol 16 (05) ◽  
pp. 362-368 ◽  
Author(s):  
Federica Sullo ◽  
Agata Polizzi ◽  
Stefano Catanzaro ◽  
Selene Mantegna ◽  
Francesco Lacarrubba ◽  
...  

Cerebellotrigeminal dermal (CTD) dysplasia is a rare neurocutaneous disorder characterized by a triad of symptoms: bilateral parieto-occipital alopecia, facial anesthesia in the trigeminal area, and rhombencephalosynapsis (RES), confirmed by cranial magnetic resonance imaging. CTD dysplasia is also known as Gómez-López-Hernández syndrome. So far, only 35 cases have been described with varying symptomatology. The etiology remains unknown. Either spontaneous dominant mutations or de novo chromosomal rearrangements have been proposed as possible explanations. In addition to its clinical triad of RES, parietal alopecia, and trigeminal anesthesia, CTD dysplasia is associated with a wide range of phenotypic and neurodevelopmental abnormalities.Treatment is symptomatic and includes physical rehabilitation, special education, dental care, and ocular protection against self-induced corneal trauma that causes ulcers and, later, corneal opacification. The prognosis is correlated to the mental development, motor handicap, corneal–facial anesthesia, and visual problems. Follow-up on a large number of patients with CTD dysplasia has never been reported and experience is limited to few cases to date. High degree of suspicion in a child presenting with characteristic alopecia and RES has a great importance in diagnosis of this syndrome.


2021 ◽  
Vol 22 (14) ◽  
pp. 7281
Author(s):  
Benoit R. Gauthier ◽  
Valentine Comaills

The dynamic nature of the nuclear envelope (NE) is often underestimated. The NE protects, regulates, and organizes the eukaryote genome and adapts to epigenetic changes and to its environment. The NE morphology is characterized by a wide range of diversity and abnormality such as invagination and blebbing, and it is a diagnostic factor for pathologies such as cancer. Recently, the micronuclei, a small nucleus that contains a full chromosome or a fragment thereof, has gained much attention. The NE of micronuclei is prone to collapse, leading to DNA release into the cytoplasm with consequences ranging from the activation of the cGAS/STING pathway, an innate immune response, to the creation of chromosomal instability. The discovery of those mechanisms has revolutionized the understanding of some inflammation-related diseases and the origin of complex chromosomal rearrangements, as observed during the initiation of tumorigenesis. Herein, we will highlight the complexity of the NE biology and discuss the clinical symptoms observed in NE-related diseases. The interplay between innate immunity, genomic instability, and nuclear envelope leakage could be a major focus in future years to explain a wide range of diseases and could lead to new classes of therapeutics.


2021 ◽  
Author(s):  
Elena Evstafeva ◽  
Svetlana Tymchenko ◽  
Anna Bogdanova ◽  
Olga Zalata ◽  
Yuliia Boyarinceva ◽  
...  

<p>The implementation of basic principles of medical and ecological monitoring programs in Crimea previously reported in EGU proceedings consists of determining the content of a wide range of toxic, essential and rare earth elements in various biological substrates: soil, plants, water, human body. Biosubstrates are sampled in different locations with contrast natural and anthropogenic conditions: urbanized-rural, industrial-agricultural, natural resources. Lichens and poplar leaves are used as indicators of environmental contamination, particularly atmospheric pollution; liquid precipitation is used as an indicator showing the negative impact of air pollution on ecosystems; hair is used as an indicator of the total body intake of chemical elements. The update of databases, on some of the territories (Simferopol, Sevastopol, geographical regions with different soil characteristics, etc.) with regard to some of the elements (mercury, lead, cadmium, selenium, etc.) at this stage allowed to determine their biogeochemical status in conditions of intensive growth of anthropogenic load in recent years, and to compare it with the elemental status of the humans living in this territory. The databases for other types of territories continue to be extended, the relationship between morbidity to estimate of the environmental burden of disease for environmentally determined diseases (neurodegenerative, endocrine, respiratory, etc.) and chemical load on the territories, based on USEtox model; the functional state of target systems (nervous, immune, cardiovascular) and level of chemical elements in the human body and the overall elemental imbalance, is established. This has provided us with a degree of understanding on how the degree of population and individual health risk could be determined.</p><p>Mercury analysis was funded by RFBR according to the research project № 18-29-24212\19 entitled “Development of neutralization of mercury-containing waste without heating and the formation of wastewater”, 2018–2021 years; elemental composition was possible to determine due to RFBR project № 18-45-920042\20 entitled “Bioecological monitoring of heavy metals at board of Black Sea of Crimea”, 2018–2020 years. Physiological part of research was possible to accomplish due to funds by the V.I. Vernadsky Crimean Federal University (Project No VG2019/15, АААА-А20-120012090158-7).</p>


2018 ◽  
Vol 16 (4) ◽  
pp. 352-358 ◽  
Author(s):  
Junichi Kashiwagi ◽  
Koji Hamada ◽  
Yutaka Jitsuyama

AbstractDirect sowing of rice in a flooded paddy field is a beneficial cultivation practice for water use and labour efficiency, compared to the transplanted cultivation. However, a drastic reduction in seedling emergence under flooded paddy fields is a serious constraint especially when the seeds fell at deeper soil layers. Suitable rice germplasm for the direct sowing in flooded paddy fields could ensure the success of this cultivation practice. Instead of laborious field-based screening systems, a pot-based screening method was adopted for simplicity and efficient evaluation of seedling emergence of a subset of world rice germplasm (n = 75) at different sowing depths. As a result, two rice genotypes, ‘Vary Futsi’ (landrace from Madagascar, non-glutinous, subspecies Indica) and ‘Dahonggu’ (landrace from China, non-glutinous, subspecies Indica), with consistently better seedling emergence were identified from a wide range of rice germplasm. These genotypes could serve as excellent parents for the breeding program in developing new rice cultivars with the improved seedling emergence in flooded paddy fields. There were no significant differences in the seedling emergence rate in flooded paddy conditions among the groups from various agro-geographical regions.


2021 ◽  
Vol 55 (2) ◽  
Author(s):  
Piotr Zięba ◽  
Agnieszka Sękara ◽  
Katarzyna Sułkowska-Ziaja ◽  
Bożena Muszyńska

Humans have used mushrooms from the beginning of their history. However, during the last few decades, the market demand for these fruiting bodies has increased significantly owing to the spread in the capabilities of culinary and pharmacological exploitation. Natural mushroom resources have become insufficient to meet the support needs. Therefore, traditional methods of extensive cultivation as well as modern technologies have been exploited to develop effective growing recommendations for dozens of economically important mushroom species. Mushrooms can decompose a wide range of organic materials, including organic waste. They play a fundamental role in nutrient cycling and exchange in the environment. The challenge is a proper substrate composition, including bio-fortified essential elements, and the application of growing conditions to enable a continuous supply of fruiting bodies of market quality and stabilized chemical composition. Many mushroom species are used for food preparation. Moreover, they are treated as functional foods, because they have health benefits beyond their nutritional value, and are used as natural medicines in many countries. Owing to the rapid development of mushroom farming, we reviewed the growing technologies used worldwide for mushroom species developed for food, processing, and pharmacological industries.


2020 ◽  
Vol 24 (7) ◽  
pp. 738-746
Author(s):  
L. V. Shchukina ◽  
I. F. Lapochkina ◽  
T. A. Pshenichnikova

The creation of varieties adapted to changing environmental conditions, resistant to various pathogens, and satisfying various grain purposes is impossible without using the genetic diversity of wheat. One of the ways to expand the genetic diversity of wheat is to introduce new variants of genes from the genetic pool of congeners and wild relatives into the genotypes of existing varieties. In this study, we used 10 lines from the Arsenal collection created on the genetic basis of the spring variety ‘Rodina’ and the diploid species Aegilops speltoides in the Federal Research Center “Nemchinovka” in 1994. The lines were previously characterized for the presence of translocations and chromosomal rearrangements cytologically and using molecular markers. Technological analyses were performed on grain obtained in Western Siberia and Moscow region. The aim of this study was to establish the possibilities of expanding the phenotypic diversity for technological properties of grain and flour as a result of such hybridization of bread wheat and the diploid cereal Aegilops speltoides. The variety ‘Rodina’ forms a vitreous grain with a high gluten content in Siberia, but has low physical properties of flour and dough. Five derived lines were found to have significantly higher protein and gluten content in grain. The highest values under both growing conditions were found in lines 73/00i, 82/00i, and 84/00i. Two lines (69/00i and 76/00i) showed a high flour strength and dough elasticity, characterizing the lines as strong and valuable in quality. These lines can be used for baking bread. Line 82/00i inherited from Ae. speltoides a soft-grain endosperm, which indicates the introgression of the Ha-Sp gene, homoeoallelic to the Ha gene of bread wheat, into ‘Rodina’. Flour of this line is suitable for the manufacture of confectionery without the use of technological additives. The lines generally retained their characteristics in different growing conditions. They can be attracted as donors of new alleles of genes that determine the technological properties of grain and resistance to biotic stresses.


Author(s):  
Harshit Bhardwaj ◽  
Pradeep Tomar ◽  
Aditi Sakalle ◽  
Uttam Sharma

Agriculture is the oldest and most dynamic occupation throughout the world. Since the population of world is always increasing and land is becoming rare, there evolves an urgent need for the entire society to think inventive and to find new affective solutions to farm, using less land to produce extra crops and growing the productivity and yield of those farmed acres. Agriculture is now turning to artificial intelligence (AI) technology worldwide to help yield healthier crops, track soil, manage pests, growing conditions, coordinate farmers' data, help with the workload, and advance a wide range of agricultural tasks across the entire food supply chain.


2020 ◽  
Vol 37 (9) ◽  
pp. 2747-2762 ◽  
Author(s):  
Guénola Drillon ◽  
Raphaël Champeimont ◽  
Francesco Oteri ◽  
Gilles Fischer ◽  
Alessandra Carbone

Abstract Gene order can be used as an informative character to reconstruct phylogenetic relationships between species independently from the local information present in gene/protein sequences. PhyChro is a reconstruction method based on chromosomal rearrangements, applicable to a wide range of eukaryotic genomes with different gene contents and levels of synteny conservation. For each synteny breakpoint issued from pairwise genome comparisons, the algorithm defines two disjoint sets of genomes, named partial splits, respectively, supporting the two block adjacencies defining the breakpoint. Considering all partial splits issued from all pairwise comparisons, a distance between two genomes is computed from the number of partial splits separating them. Tree reconstruction is achieved through a bottom-up approach by iteratively grouping sister genomes minimizing genome distances. PhyChro estimates branch lengths based on the number of synteny breakpoints and provides confidence scores for the branches. PhyChro performance is evaluated on two data sets of 13 vertebrates and 21 yeast genomes by using up to 130,000 and 179,000 breakpoints, respectively, a scale of genomic markers that has been out of reach until now. PhyChro reconstructs very accurate tree topologies even at known problematic branching positions. Its robustness has been benchmarked for different synteny block reconstruction methods. On simulated data PhyChro reconstructs phylogenies perfectly in almost all cases, and shows the highest accuracy compared with other existing tools. PhyChro is very fast, reconstructing the vertebrate and yeast phylogenies in <15 min.


1999 ◽  
Vol 16 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Laura S. Kenefic ◽  
Ralph D. Nyland

Abstract Sugar maple (Acer saccharum Marsh.) height-diameter and age-diameter relationships are explored in a balanced uneven-aged northern hardwood stand in central New York. Results show that although both height and age vary considerably with diameter, these relationships can be described by statistically valid equations. The age-diameter relationship compares favorably to one reported by Tubbs (1977) for sugar maple in unmanaged (virgin) northern hardwoods, suggesting that periodic cuttings improved growing conditions in our stand. Deliberate attempts to control size-class distribution and tree spacing should continue to increase diameter growth rates and decrease the time needed to reach certain threshold tree sizes. Growth rates that can be reasonably expected in this and similarly structured stands are provided. Lastly, a wide range of heights and diameters are documented, confirming the structural complexity associated with the balanced selection system. An equation to predict sugar maple height from diameter is provided and may prove useful when assessing habitat or visual characteristics of complex uneven-aged stands. North. J. Appl. For. 16(1):43-47.


Sign in / Sign up

Export Citation Format

Share Document