scholarly journals Quantification of the degree of occlusion of roller pumps by the fixed flow rate - injection pressure method

2021 ◽  
Vol 48 (2) ◽  
pp. 62-67
Author(s):  
Takahiro Okumura ◽  
Yoshiki Nakazawa ◽  
Tsubasa Machida

2021 ◽  
Author(s):  
Miguel Angel Cedeno

Abstract The unconventional resources development has grown tremendously as a result of the advancement in horizontal drilling technology coupled with hydraulic fracturing. However, as more wells are drilled and fractured close to each other, frac hits have become a major challenge in these wells. The aim of this work is to investigate the effect of nitrogen injection flow rate and pressure on unloading frac hits gas wells in transient multiphase flow. A numerical simulation model was created using a transient multiphase flow simulator to mimic the unloading process of frac hits by injecting nitrogen from the surface through the annulus section of the well. Many simulation cases were created and analyzed to comprehend the effect of the nitrogen injection rate and pressure on the unloading of frac hits. The model mimicked real field data from currently active well in the Eagle Ford Shale. The results showed that as the nitrogen injection pressure increases, the nitrogen volume and the time to unload the frac hits decrease. On the other hand, increasing the injection rate of nitrogen will increase the nitrogen volume required to unload the frac hits. In addition, the time to unload frac hits will be decreased as the nitrogen injection rate increases. These results indicate that the time required to unload frac hits will be minimized if higher flow rates of nitrogen were utilized. Nonetheless, the volume of nitrogen required to unload the frac hits will be maximized. An important observation to highlight is that the operators can save money by reducing the time for injecting nitrogen. This observation was verified when increasing the injection pressure in the frac hit well in the Eagle Ford Shale, the time of injection was reduced 20%. This study presents the effects of nitrogen injection flow rate and injection pressure for unloading frac hits in gas wells. Due to the lack of published studies about this topic, this work can serve as a practical guideline for unloading frac hits in gas wells.



Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 525
Author(s):  
Geng ◽  
Abdollahi-Nasab ◽  
An ◽  
Chen ◽  
Lee ◽  
...  

The remediation of beaches contaminated with oil includes the application of surfactants and/or the application of amendments to enhance oil biodegradation (i.e., bioremediation). This study focused on evaluating the practicability of the high pressure injection (HPI) of dissolved chemicals into the subsurface of a lentic Alaskan beach subjected to a 5 m tidal range. A conservative tracer, lithium, in a lithium bromide (LiBr) solution, was injected into the beach at 1.0 m depth near the mid-tide line. The flow rate was varied between 1.0 and 1.5 L/min, and the resulting injection pressure varied between 3 m and 6 m of water. The concentration of the injected tracer was measured from four surrounding monitoring wells at multiple depths. The HPI associated with a flow rate of 1.5 L/min resulted in a Darcy flux in the cross-shore direction at 1.15 × 10−5 m/s compared to that of 7.5 × 10−6 m/s under normal conditions. The HPI, thus, enhanced the hydraulic conveyance of the beach. The results revealed that the tracer plume dispersed an area of ~12 m2 within 24 h. These results suggest that deep injection of solutions into a gravel beach is a viable approach for remediating beaches.



2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Mohd Fazuri Abdullah ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Muhamad Afkar Husin

In the competitive world in the global market, manufacturing industry is striving to produce products at high quality, shorter time and low cost. This can be achieved through proper design activities, with assist of finite element analysis (FEA) and computer aided design (CAD). The objective of this project is to study the effect of the molding parameters on the physical characteristics of surgery tool via MIM based on design of experiment (Taguchi method). This numerical results show the behavior of feedstock entering the mould during injection process and the possibility defects that might occur. The quality of the injected product depends on the selection of the feedstock as well as the parameters for injection molding such as injection temperature (A), mold temperature (B), flow rate (C) and injection pressure (D). From the analysis of Taguchi, the optimal levels of process parameters for the shortest filling time is [A3(200ºC), B1(80ºC), C3(20 cm3/s), D3(260 MPa)]. Set of optimal parameters for the smallest shrinkage percentage difference is [A1(180ºC), B3(100ºC), C3(20 cm3/s), D2(255 MPa)]. The most influence injection molding parameters are injection temperature and injection pressure. Follow by the flow rate.



2002 ◽  
Vol 118 (10/11) ◽  
pp. 675-680
Author(s):  
Yasuhiko SOTOIKE ◽  
Kohei YAMAOKA ◽  
Yoshiaki MIZUTA


Author(s):  
O. Chiavola ◽  
F. Palmieri ◽  
G. Chiatti

A model for the analysis of diesel engine common rail injection system has been developed and the influence that different fuels have on the injection performances has been investigated. Diesel fuel, biodiesel and kerosene have been used and the differences of injection flow rate, injection pressure time trace, nozzle flow features and break up mechanism have been highlighted. The coupling of two different codes has been used in the simulations: the former one, AMESim code, has been adopted to model the common rail system and to investigate the fuel flow rate and the injection pressure dependence on the fuel type. The latter computational tool, FIRE code, has been initialized by means of the results obtained from the injection system simulation and has been used to perform the 3D investigation of the internal nozzle flow and of the spray formation phenomena, aimed at evaluating the effect of physical fuel features on local flow characteristics and their influence on the system performances. Details of the adopted modeling strategy are described and results of each simulation step are presented.



Author(s):  
Bruno Ferreira ◽  
Daniel Sales Santos Machado ◽  
Alex de Oliveira ◽  
Marco Aurélio Justino ◽  
Vinicius Guerra Moreira ◽  
...  


2012 ◽  
Vol 166-169 ◽  
pp. 3056-3059 ◽  
Author(s):  
Fang Xu ◽  
Wei Dong ◽  
Liang Qiang

A new multi-orifice effervescent atomizer used for fire fighting was developed. The droplet size distribution of the spray produced by the nozzle was measured by laser Doppler particle analyzer. And the influence of liquid injection pressure, water flow rate and atomizer internal geometry was studied.



2017 ◽  
Vol 114 ◽  
pp. 4986-4993 ◽  
Author(s):  
Ying Teng ◽  
Yu Liu ◽  
Guohuan Lu ◽  
Lanlan Jiang ◽  
Dayong Wang ◽  
...  


2019 ◽  
Vol 6 (2) ◽  
pp. 41-47
Author(s):  
V. N. Babaev ◽  
I. I. Kaptsov ◽  
O. I. Nalyvaiko

In the article there is made an attempt to investigate the most effective methods of petrofeedback increasing and wells productivity in the conditions of Ukrainian oil and gas fields. Traditional methods petrofeedback increasing and new approaches of solving this problem, such as hydrophobization layer zones or the use of water-swellable polymers are also considered.Particular attention is given to the processing of studies of cores of flooded wells to determine the coefficient of permeability recovery after injection of hydrophobic suspension "Ramsinks-2". The material significantly increases the injectivity of the well, reduces the injection pressure by improving permeability of the formation. It is shown that the use of hydrophobic materials "Ramsinks-2" and "Silpan-SV" in wells allows almost completely restore the filtration characteristics of the producing formation by increasing the oil component in the oil-water mixture.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S.V. Khandal ◽  
T.M. Yunus Khan ◽  
Sarfaraz Kamangar ◽  
Maughal Ahmed Ali Baig ◽  
Salman Ahmed N J

PurposeThe different performance tests were conducted on diesel engine compression ignition (CI) mode and CRDi engine.Design/methodology/approachThe CI engine was suitably modified to CRDi engine with Toroidal re-entrant combustion chamber (TRCC) and was run in dual-fuel (DF) mode. Hydrogen (H2) was supplied at different flow rates during the suction stroke, and 0.22 Kg/h of hydrogen fuel flow rate (HFFR) was found to be optimum. Diesel and biodiesel were used as pilot fuels. The CRDi engine with DF mode was run at various injection pressures, and 900 bar was found to be optimum injection pressure (IP) with 10o before top dead center (bTDC) as fuel injection timing (IT).FindingsThese operating engine conditions increased formation of oxides of nitrogen (NOx), which were reduced by exhaust gas recycle (EGR). With EGR of 15%, CRDi engine resulted in 12.6% lower brake thermal efficiency (BTE), 5.5% lower hydrocarbon (HC), 7.7% lower carbon monoxide (CO), 26% lower NOx at 80% load as compared to the unmodified diesel engine (CI mode).Originality/valueThe current research is an effort to study and evaluate the performance of CRDi engine in DF mode with diesel-H2 and BCPO-H2 fuel combinations with TRCC.



Sign in / Sign up

Export Citation Format

Share Document