scholarly journals Tandem CAR-T cells targeting FOLR1 and MSLN enhance the antitumor effects in ovarian cancer

2021 ◽  
Vol 17 (15) ◽  
pp. 4365-4376
Author(s):  
Zhen Liang ◽  
Jiao Dong ◽  
Neng Yang ◽  
Si-Di Li ◽  
Ze-Yu Yang ◽  
...  
2021 ◽  
Vol 20 ◽  
pp. 325-341
Author(s):  
Runzhe Shu ◽  
Vera J. Evtimov ◽  
Maree V. Hammett ◽  
Nhu-Y N. Nguyen ◽  
Junli Zhuang ◽  
...  
Keyword(s):  
T Cells ◽  

2021 ◽  
Vol 13 (591) ◽  
pp. eabd8836
Author(s):  
Axel Hyrenius-Wittsten ◽  
Yang Su ◽  
Minhee Park ◽  
Julie M. Garcia ◽  
Josef Alavi ◽  
...  

The first clinically approved engineered chimeric antigen receptor (CAR) T cell therapies are remarkably effective in a subset of hematological malignancies with few therapeutic options. Although these clinical successes have been exciting, CAR T cells have hit roadblocks in solid tumors that include the lack of highly tumor-specific antigens to target, opening up the possibility of life-threatening “on-target/off-tumor” toxicities, and problems with T cell entry into solid tumor and persistent activity in suppressive tumor microenvironments. Here, we improve the specificity and persistent antitumor activity of therapeutic T cells with synthetic Notch (synNotch) CAR circuits. We identify alkaline phosphatase placental-like 2 (ALPPL2) as a tumor-specific antigen expressed in a spectrum of solid tumors, including mesothelioma and ovarian cancer. ALPPL2 can act as a sole target for CAR therapy or be combined with tumor-associated antigens such as melanoma cell adhesion molecule (MCAM), mesothelin, or human epidermal growth factor receptor 2 (HER2) in synNotch CAR combinatorial antigen circuits. SynNotch CAR T cells display superior control of tumor burden when compared to T cells constitutively expressing a CAR targeting the same antigens in mouse models of human mesothelioma and ovarian cancer. This was achieved by preventing CAR-mediated tonic signaling through synNotch-controlled expression, allowing T cells to maintain a long-lived memory and non-exhausted phenotype. Collectively, we establish ALPPL2 as a clinically viable cell therapy target for multiple solid tumors and demonstrate the multifaceted therapeutic benefits of synNotch CAR T cells.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 12-12 ◽  
Author(s):  
Oladapo O. Yeku ◽  
Terence Purdon ◽  
David R. Spriggs ◽  
Renier J. Brentjens

12 Background: Immune escape via downregulation of tumor associated antigens (TAAs) is an important mechanism of resistance to Chimeric Antigen Receptor (CAR) T cell therapy. Particularly in solid tumor malignancies where antigen expression could be heterogeneous, the risk of antigen-low or antigen-negative relapse is significantly high. One strategy to overcome this limitation is to reengineer CAR T cells to engage other arms of the immune system such as endogenous cytotoxic T cells and dendritic cells (DC) to broaden the antitumor response beyond the TAA targeted by CAR T cells. This could be achieved by co-modifying CAR T cells with Interleukin-12 (IL-12). IL-12 is a proinflammatory cytokine produced by DCs, and macrophages, and has been shown to promote maturation of DCs and increase T-cell proliferation. We hypothesized that CAR T cells genetically engineered to constitutively secrete IL-12 will be efficacious against Muc16ecto low (MLo) and Muc16ecto high (MHi) heterogeneous tumors in a syngeneic mouse model of ovarian peritoneal carcinomatosis. Methods: ID8 mouse ovarian cancer cells with either low endogenous Muc16ecto or transduced to express high levels of Muc16ecto were generated. Mouse T cells were transduced with plasmids encoding second generation Muc16 or Muc16/IL-12-directed CARs. C57BL/6 mice were inoculated i.p with tumor cells and subsequently treated with CAR T cells. Results: Second generation and IL-12 armored CAR T cells (4H1128?-IL12) were cytotoxic against both MLo and MHi cells in vitro. However, 4H1128?-IL12 were significantly more efficacious at killing both MLo and MHi cancer cells. In vivo, treatment with 4H1128?-IL12 led to significantly improved survival in mice inoculated with a 50:50 mix of MLo and MHi cells. Peritoneal washes performed on mice that succumbed to disease showed equivalent eradication of MLo and MHi. Treatment with 4H1128?-IL12 resulted in increased mature peritoneal DC’s (CD11b+ MHCII+). Finally, surviving mice from 4H1128?-IL12 cohorts were found to have increased T-cell receptor (TCR-β) productive clonality. Conclusions: IL-12-secreting CAR T cells are efficacious against tumors with low and heterogeneous antigen expression.


2019 ◽  
Vol 11 (511) ◽  
pp. eaaw9414 ◽  
Author(s):  
Hong Qin ◽  
Zhenyuan Dong ◽  
Xiuli Wang ◽  
Wesley A. Cheng ◽  
Feng Wen ◽  
...  

CAR T cells targeting CD19 provide promising options for treatment of B cell malignancies. However, tumor relapse from antigen loss can limit efficacy. We developed humanized, second-generation CAR T cells against another B cell–specific marker, B cell activating factor receptor (BAFF-R), which demonstrated cytotoxicity against human lymphoma and acute lymphoblastic leukemia (ALL) lines. Adoptively transferred BAFF-R-CAR T cells eradicated 10-day preestablished tumor xenografts after a single treatment and retained efficacy against xenografts deficient in CD19 expression, including CD19-negative variants within a background of CD19-positive lymphoma cells. Four relapsed, primary ALLs with CD19 antigen loss obtained after CD19-directed therapy retained BAFF-R expression and activated BAFF-R-CAR, but not CD19-CAR, T cells. BAFF-R-CAR, but not CD19-CAR, T cells also demonstrated antitumor effects against an additional CD19 antigen loss primary patient–derived xenograft (PDX) in vivo. BAFF-R is amenable to CAR T cell therapy, and its targeting may prevent emergence of CD19 antigen loss variants.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 192-192
Author(s):  
Adrienne H. Long ◽  
Rimas J. Orentas ◽  
Crystal L. Mackall

Abstract Introduction Chimeric antigen receptors (CARs) provide a promising new approach for the adoptive immunotherapy of cancer. Though impressive antitumor activity has been observed with some CAR T cells, other CAR T cells demonstrate poor antitumor efficacy in vivo despite high cytolytic capacity in vitro due to poor expansion and persistence. Whether exhaustion of CAR T cells mirrors exhaustion that occurs naturally in chronically stimulated human T cells has not yet been studied. Here, we report that expression of select CD28 containing CARs in normal human T cells rapidly induces an exhausted state characterized by high PD-1 expression, poor persistence and poor antitumor efficacy, whereas other CARs do not induce this phenotype. Results Human T cells were expanded with anti-CD3/CD28 beads, and then transduced with a second-generation (CD28-CD3ζ) disialoganglioside 2 (GD2) specific CAR or a second-generation (CD28-CD3ζ) CD19 specific CAR. By day 7 of in vitro expansion, GD2 CAR T cells developed a metabolism more highly dependent on glycolysis compared to CD19 CAR T cells or untransduced controls. Neither CAR population was exposed to antigen during this expansion period. Using a Seahorse Extracellular Flux Analyzer, the ratio of glycolysis to oxidative phosphorylation rates (ECAR:OCR ratio) of GD2 CAR T cells was found to be double that of CD19 CAR T cells or controls on day 7. The highly glycolytic metabolism of GD2 CAR T cells was associated with an exhausted phenotype. GD2 CAR T cells expressed higher levels of PD-1, TIM-3 and LAG-3, and transcription repressor BLIMP-1, compared to CD19 CAR T cells or untransduced controls. Additionally, GD2 CAR T cells were poor cytokine producers, generating <10x lower levels of IL2, TNFα and IFNγ than CD19 CAR T cells upon in vitro co-incubation with a GD2+CD19+ osteosarcoma line (143B-CD19), despite maintaining comparable in vitro cytolytic ability. GD2 CAR T cells showed poor in vitro expansion and increased rates of apoptosis compared to controls. GD2 CAR T cells also did not persist and did not mediate antitumor effects against GD2+CD19+ tumors in a murine xenograft model in vivo, whereas CD19 CAR T cells completely eradicated CD19+ tumors and persisted in both the spleen and tumor compartments. To rule out the possibility that diminished cytokine production and in vivo efficacy was related to antigen specific effects, T cells were co-transduced with both the GD2 and CD19 CARs. Though single-transduced CD19 CAR T cells show no signs of an altered metabolism or exhaustion and have strong antitumor efficacy, CD19 CAR T cells co-transduced with the GD2 CAR demonstrate an exhausted phenotype and diminished antitumor efficacy similar to that of single-transduced GD2 CAR T cells. Thus, expression of the GD2 CAR confers a dominant exhausted phenotype in T cells, and prevents otherwise efficacious CARs from mediating strong antitumor effects. We hypothesized that chronic signaling of CD3ζ and CD28 via the GD2 CAR results in exhaustion. Interestingly, however, we did not identify GD2 expression in the culture system. Point mutations in the CAR antigen-binding site, though abrogating GD2 binding, did not prevent the development of exhaustion. Thus, we postulate that constitutive receptor signaling may occur via interactions between the framework regions of the CAR receptors. Importantly however, substitution of 4-1BB for the CD28 domain in the GD2 CAR substantially diminished PD-1 expression, one of the hallmark features of exhausted T cells. Conclusions We report that expression of a CD28 containing GD2 CAR induces both an altered metabolism and an exhausted state in human T cells, resulting in poor in vivo persistence and antitumor efficacy. We hypothesize that tonic signaling through the GD2 CAR induces this phenotype and have identified the CD28 domain as an important component contributing to this phenotype. Rapid induction of exhaustion mediated via a synthetic receptor provides a novel model system to identify mechanistic factors required for this phenotype in human T cells. Work is currently underway to molecularly define the basis for the exhaustion of GD2 CAR T cells and to probe a potential role for altered T cell metabolism as a contributor to T cell exhaustion in human T cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document