scholarly journals Formation of Anion-selective Membrane Pores by Texenomycin A, a Basic Lipopeptaibol Antibiotic.

2002 ◽  
Vol 55 (9) ◽  
pp. 826-828 ◽  
Author(s):  
P. A. GRIGORIEV ◽  
A. BERG ◽  
B. SCHLEGEL ◽  
S. HEINZE ◽  
U. GRÄFE
2021 ◽  
Author(s):  
Sunidhi Shetty ◽  
Naresh Yandrapalli ◽  
Kerstin Pinkwart ◽  
Dorothee Krafft ◽  
Tanja Vidaković-Koch ◽  
...  

<p>The bottom-up assembly of multi-compartment artificial cells that are able to direct biochemical reactions along a specific spatial pathway remains a considerable engineering challenge. In this work, we address this with a microfluidic platform which is able to produce monodisperse multivesicular vesicles (MVVs) to serve as synthetic eukaryotic cells. Using a two-inlet polydimethylsiloxane (PDMS) channel design to co-encapsulate different populations of liposomes we are able to produce lipid-based MVVs in a high-throughput manner and with three separate inner compartments each containing a different enzyme: α-glucosidase, glucose oxidase, and horseradish peroxidase. We demonstrate the ability of these MVVs to carry out directed chemical communication between the compartments <i>via </i>the reconstitution of size-selective membrane pores. Therefore, the signal transduction, which is triggered externally, follows a specific spatial pathway between the compartments. We use this platform to study the effects of enzyme cascade compartmentalization by direct analytical comparison between bulk, one-, two-, and three-compartment systems. This microfluidic strategy to construct complex hierarchical structures is not only suitable to study compartmentation effects on biochemical reactions but is also applicable for developing advanced drug-delivery systems as well as minimal cells in the field of bottom-up synthetic biology.</p>


2021 ◽  
Author(s):  
Sunidhi Shetty ◽  
Naresh Yandrapalli ◽  
Kerstin Pinkwart ◽  
Dorothee Krafft ◽  
Tanja Vidaković-Koch ◽  
...  

<p>The bottom-up assembly of multi-compartment artificial cells that are able to direct biochemical reactions along a specific spatial pathway remains a considerable engineering challenge. In this work, we address this with a microfluidic platform which is able to produce monodisperse multivesicular vesicles (MVVs) to serve as synthetic eukaryotic cells. Using a two-inlet polydimethylsiloxane (PDMS) channel design to co-encapsulate different populations of liposomes we are able to produce lipid-based MVVs in a high-throughput manner and with three separate inner compartments each containing a different enzyme: α-glucosidase, glucose oxidase, and horseradish peroxidase. We demonstrate the ability of these MVVs to carry out directed chemical communication between the compartments <i>via </i>the reconstitution of size-selective membrane pores. Therefore, the signal transduction, which is triggered externally, follows a specific spatial pathway between the compartments. We use this platform to study the effects of enzyme cascade compartmentalization by direct analytical comparison between bulk, one-, two-, and three-compartment systems. This microfluidic strategy to construct complex hierarchical structures is not only suitable to study compartmentation effects on biochemical reactions but is also applicable for developing advanced drug-delivery systems as well as minimal cells in the field of bottom-up synthetic biology.</p>


1986 ◽  
Vol 51 (10) ◽  
pp. 2077-2082 ◽  
Author(s):  
Jan Langmaier ◽  
František Opekar

Gold porous membrane electrode has been used for the potentiometric determination of small amounts of sulfur dioxide absorbed in the solutions of sodium tetrachloromercurate or sodium hydroxide. Sulfur dioxide is released by the reaction with an acid into a stream of nitrogen and led to the electrode immersed into the solution of iodine monochloride. Part of SO2 penetrates through the membrane pores into the solution where it is oxidized. The electrode redox potential change is a measure of the SO2 concentration in the absorption solution. In the solution of 1 . 10-5 M[ICl2]- in 0.02 M-HClO4 the limit of quantitation was found to be 0.07 ng SO2 . ml-1. The relative standard deviations of 1.4% and 2.5% were found for the determinations of 10 ng and 0.5 ng of SO2, respectively. Higher concentrations of H2S interfere only in the hydroxide solution. About 10 samples can be analyzed per one hour.


2010 ◽  
Vol 75 (5) ◽  
pp. 563-575 ◽  
Author(s):  
Moslem Mohammadi ◽  
Mehdi Khodadadian ◽  
Mohammad K. Rofouei

A plasticized poly(vinyl chloride) membrane electrode based on 4-[(5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl]benzene-1,3-diol (L) for highly selective determination of palladium(II) (in PdCl42– form) is developed. The electrode showed a good Nernstian response (29.6 ± 0.4 mV per decade) over a wide concentration range (3.1 × 10–7 to 1.0 × 10–2 mol l–1). The limit of detection was 1.5 × 10–7 mol l–1. The electrode has a response time of about 20 s, and it can be used for at least 2 months without observing any considerable deviation from Nernstian response. The proposed electrode could be used in the pH range of 2.5–5.5. The practical utility of the electrode has been demonstrated by its use for the estimation of palladium content in aqueous samples.


2021 ◽  
Vol 188 (5) ◽  
Author(s):  
Elena Zdrachek ◽  
Eric Bakker

AbstractThe capacitance of the ion-to-electron transducer layer helps to maintain a high potential stability of solid-contact ion-selective electrodes (SC-ISEs), and its estimation is therefore an essential step of SC-ISE characterization. The established chronopotentiometric protocol used to evaluate the capacitance of the single-walled carbon nanotube transducer layer was revised in order to obtain more reliable and better reproducible values and also to allow capacitance to be measured before membrane deposition for electrode manufacturing quality control purposes. The capacitance values measured with the revised method increased linearly with the number of deposited carbon nanotube–based transducer layers and were also found to correlate linearly before and after ion-selective membrane deposition, with correlation slopes close to 1 for nitrate-selective electrodes, to 0.7 and to 0.5 for potassium- and calcium-selective electrodes. Graphical abstract


Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Javed Alam ◽  
Arun Kumar Shukla ◽  
Mohammad Azam Ansari ◽  
Fekri Abdulraqeb Ahmed Ali ◽  
Mansour Alhoshan

We fabricated a nanofiltration membrane consisting of a polyaniline (PANI) film on a polyphenylsulfone (PPSU) substrate membrane. The PANI film acted as a potent separation enhancer and antimicrobial coating. The membrane was analyzed via scanning electron microscopy and atomic force microscopy to examine its morphology, topography, contact angle, and zeta potential. We aimed to investigate the impact of the PANI film on the surface properties of the membrane. Membrane performance was then evaluated in terms of water permeation and rejection of methylene blue (MB), an organic dye. Coating the PPSU membrane with a PANI film imparted significant advantages, including finely tuned nanometer-scale membrane pores and tailored surface properties, including increased hydrophilicity and zeta potential. The PANI film also significantly enhanced separation of the MB dye. The PANI-coated membrane rejected over 90% of MB with little compromise in membrane permeability. The PANI film also enhanced the antimicrobial activity of the membrane. The bacteriostasis (BR) values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Escherichia coli were 63.5% and 95.2%, respectively. The BR values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Staphylococcus aureus were 70.6% and 88.0%, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4213
Author(s):  
Seong-Kun Cho ◽  
Won-Ju Cho

In this study, a highly sensitive and selective sodium ion sensor consisting of a dual-gate (DG) structured silicon nanowire (SiNW) field-effect transistor (FET) as the transducer and a sodium-selective membrane extended gate (EG) as the sensing unit was developed. The SiNW channel DG FET was fabricated through the dry etching of the silicon-on-insulator substrate by using electrospun polyvinylpyrrolidone nanofibers as a template for the SiNW pattern transfer. The selectivity and sensitivity of sodium to other ions were verified by constructing a sodium ion sensor, wherein the EG was electrically connected to the SiNW channel DG FET with a sodium-selective membrane. An extremely high sensitivity of 1464.66 mV/dec was obtained for a NaCl solution. The low sensitivities of the SiNW channel FET-based sodium ion sensor to CaCl2, KCl, and pH buffer solutions demonstrated its excellent selectivity. The reliability and stability of the sodium ion sensor were verified under non-ideal behaviors by analyzing the hysteresis and drift. Therefore, the SiNW channel DG FET-based sodium ion sensor, which comprises a sodium-selective membrane EG, can be applied to accurately detect sodium ions in the analyses of sweat or blood.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 504
Author(s):  
Sabry Khalil ◽  
Ashraf Y. Elnaggar

The study involves the fabrication of an aluminum liquid membrane sensor based on the association of aluminum ions with the cited reagent 2,9-dimethyl-4,11-diphenyl -1,5,8,12-tetraaza cyclote tradeca-1,4,8,11-tetraene [DDTCT]. The characteristics slope (58 mV), rapid and linear response for aluminum ion was displayed by the proposed sensor within the concentration range 2.5 × 10−7–1.5 × 10−1 M, the detection limit (1.6 × 10−7) M, the selectivity behavior toward some metal cations, the response time 10 s), lifetime (150 days), the effect of pH on the suggested electrode potential and the requisite analytical validations were examined. The suitable pH range was (5.0–8.0 ), in this range the proposed electrode response is independent of pH. The suggested electrode was applied to detect the aluminum ions concentration in food products, real samples and standard alloys. The resulting data by the suggested electrode were statistically analyzed, and compared with the previously reported aluminum ion-selective electrodes in the literature.


Sign in / Sign up

Export Citation Format

Share Document