scholarly journals Dye Separation and Antibacterial Activities of Polyaniline Thin Film-Coated Poly(phenyl sulfone) Membranes

Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Javed Alam ◽  
Arun Kumar Shukla ◽  
Mohammad Azam Ansari ◽  
Fekri Abdulraqeb Ahmed Ali ◽  
Mansour Alhoshan

We fabricated a nanofiltration membrane consisting of a polyaniline (PANI) film on a polyphenylsulfone (PPSU) substrate membrane. The PANI film acted as a potent separation enhancer and antimicrobial coating. The membrane was analyzed via scanning electron microscopy and atomic force microscopy to examine its morphology, topography, contact angle, and zeta potential. We aimed to investigate the impact of the PANI film on the surface properties of the membrane. Membrane performance was then evaluated in terms of water permeation and rejection of methylene blue (MB), an organic dye. Coating the PPSU membrane with a PANI film imparted significant advantages, including finely tuned nanometer-scale membrane pores and tailored surface properties, including increased hydrophilicity and zeta potential. The PANI film also significantly enhanced separation of the MB dye. The PANI-coated membrane rejected over 90% of MB with little compromise in membrane permeability. The PANI film also enhanced the antimicrobial activity of the membrane. The bacteriostasis (BR) values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Escherichia coli were 63.5% and 95.2%, respectively. The BR values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Staphylococcus aureus were 70.6% and 88.0%, respectively.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 544
Author(s):  
Roberto Frigerio ◽  
Angelo Musicò ◽  
Marco Brucale ◽  
Andrea Ridolfi ◽  
Silvia Galbiati ◽  
...  

Since the outbreak of the COVID-19 crisis, the handling of biological samples from confirmed or suspected SARS-CoV-2-positive individuals demanded the use of inactivation protocols to ensure laboratory operators’ safety. While not standardized, these practices can be roughly divided into two categories, namely heat inactivation and solvent-detergent treatments. These routine procedures should also apply to samples intended for Extracellular Vesicles (EVs) analysis. Assessing the impact of virus-inactivating pre-treatments is therefore of pivotal importance, given the well-known variability introduced by different pre-analytical steps on downstream EVs isolation and analysis. Arguably, shared guidelines on inactivation protocols tailored to best address EVs-specific requirements will be needed among the analytical community, yet deep investigations in this direction have not yet been reported. We here provide insights into SARS-CoV-2 inactivation practices to be adopted prior to serum EVs analysis by comparing solvent/detergent treatment vs. heat inactivation. Our analysis entails the evaluation of EVs recovery and purity along with biochemical, biophysical and biomolecular profiling by means of a set of complementary analytical techniques: Nanoparticle Tracking Analysis, Western Blotting, Atomic Force Microscopy, miRNA content (digital droplet PCR) and tetraspanin assessment by microarrays. Our data suggest an increase in ultracentrifugation (UC) recovery following heat treatment; however, it is accompanied by a marked enrichment in EVs-associated contaminants. On the other hand, solvent/detergent treatment is promising for small EVs (<150 nm range), yet a depletion of larger vesicular entities was detected. This work represents a first step towards the identification of optimal serum inactivation protocols targeted to EVs analysis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 182
Author(s):  
Petr Slepička ◽  
Silvie Rimpelová ◽  
Nikola Slepičková Kasálková ◽  
Dominik Fajstavr ◽  
Petr Sajdl ◽  
...  

This article is focused on the evaluation of surface properties of polytetrafluoroethylene (PTFE) nanotextile and a tetrafluoroethylene-perfluoro(alkoxy vinyl ether) (PFA) film and their surface activation with argon plasma treatment followed with silver nanoclusters deposition. Samples were subjected to plasma modification for a different time exposure, silver deposition for different time periods, or their combination. As an alternative approach, the foils were coated with poly-L-lactic acid (PLLA) and silver. The following methods were used to study the surface properties of the polymers: goniometry, atomic force microscopy, and X-ray photoelectron microscopy. By combining the aforementioned methods for material surface modification, substrates with antibacterial properties eliminating the growth of Gram-positive and Gram-negative bacteria were prepared. Studies of antimicrobial activity showed that PTFE plasma-modified samples coated with PLLA and deposited with a thin layer of Ag had a strong antimicrobial effect, which was also observed for the PFA material against the bacterial strain of S. aureus. Significant antibacterial effect against S. aureus, Proteus sp. and E. coli has been demonstrated on PTFE nanotextile plasma-treated for 240 s, coated with PLLA, and subsequently sputtered with thin Ag layer.


2003 ◽  
Vol 788 ◽  
Author(s):  
R. Job ◽  
Y. Ma ◽  
A. G. Ulyashin

ABSTRACTHydrogen plasma treatments applied on standard Czochralski silicon (Cz Si) wafers cause a structuring of the surface regions on the sub-100 nm scale, i.e. a thin ‘nano-structured’ Si layer is created up to a depth of ∼ 150 nm. The formation of the ‘nano-structures’ and their evolution in dependence on the process conditions was studied. The impact of post-hydrogenation annealing on the morphology of the structural defects was studied up to 1200 °C. The H-plasma treated and annealed samples were analyzed at surface and sub-surface regions by scanning electron microscopy (SEM), atomic force microscopy (AFM), and μ-Raman spectroscopy.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1354
Author(s):  
Vera Bogdanovskaya ◽  
Inna Vernigor ◽  
Marina Radina ◽  
Vladimir Sobolev ◽  
Vladimir Andreev ◽  
...  

In order to develop highly efficient and stable catalysts for oxygen reduction reaction (ORR) that do not contain precious metals, it is necessary to modify carbon nanotubes (CNT) and define the effect of the modification on their activity in the ORR. In this work, the modification of CNTs included functionalization by treatment in NaOH or HNO3 (soft and hard conditions, respectively) and subsequent doping with nitrogen (melamine was used as a precursor). The main parameters that determine the efficiency of modified CNT in ORR are composition and surface area (XPS, BET), hydrophilic–hydrophobic surface properties (method of standard contact porosimetry (MSP)) and zeta potential (dynamic light scattering method). The activity of CNT in ORR was assessed following half-wave potential, current density within kinetic potential range and the electrochemically active surface area (SEAS). The obtained results show that the modification of CNT with oxygen-containing groups leads to an increase in hydrophilicity and, consequently, SEAS, as well as the total (overall) current. Subsequent doping with nitrogen ensures further increase in SEAS, higher zeta potential and specific activity in ORR, reflected in the shift of the half-wave potential by 150 mV for CNTNaOH-N and 110 mV for CNTHNO3-N relative to CNTNaOH and CNTHNO3, respectively. Moreover, the introduction of N into the structure of CNTHNO3 increases their corrosion stability.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2434
Author(s):  
Hamada AbdElgawad ◽  
Mohammad K. Okla ◽  
Saud S. Al-amri ◽  
Abdulrahman AL-Hashimi ◽  
Wahida H. AL-Qahtani ◽  
...  

Caraway plants have been known as a rich source of phytochemicals, such as flavonoids, monoterpenoid glucosides and alkaloids. In this regard, the application of elevated CO2 (eCO2) as a bio-enhancer for increasing plant growth and phytochemical content has been the focus of many studies; however, the interaction between eCO2 and plants at different developmental stages has not been extensively explored. Thus, the present study aimed at investigating the changes in growth, photosynthesis and phytochemicals of caraway plants at two developmental stages (sprouts and mature tissues) under control and increased CO2 conditions (ambient CO2 (a CO2, 400 ± 27 μmol CO2 mol−1 air) and eCO2, 620 ± 42 μmol CO2 mol−1 air ppm). Moreover, we evaluated the impact of eCO2-induced changes in plant metabolites on the antioxidant and antibacterial activities of caraway sprouts and mature plants. CO2 enrichment increased photosynthesis and biomass accumulation of both caraway stages. Regarding their phytochemical contents, caraway plants interacted differently with eCO2, depending on their developmental stages. High levels of CO2 enhanced the production of total nutrients, i.e., carbohydrates, proteins, fats and crude fibers, as well as organic and amino acids, in an equal pattern in both caraway sprouts and mature plants. Interestingly, the eCO2-induced effect on minerals, vitamins and phenolics was more pronounced in caraway sprouts than the mature tissues. Furthermore, the antioxidant and antibacterial activities of caraway plants were enhanced under eCO2 treatment, particularly at the mature stage. Overall, eCO2 provoked changes in the phytochemical contents of caraway plants, particularly at the sprouting stage and, hence, improved their nutritive and health-promoting properties.


2018 ◽  
Author(s):  
Molla Islam ◽  
Maddie Tumbarello ◽  
Andrew Lyon

<div>We demonstrated the deswelling induced morphological change in dual pH and Temperature responsive ultra-low crosslinked Poly (N-isopropyl acrylamide)-co-acrylic acid microgels. The responsivity with pH and temperature were studied by light scattering and atomic force microscopy. Light scattering data suggest that at pH 4.5 the microgels undergo multiple transitions associated with collapse of pNIPAm-rich segments and repulsion between the AAc-rich segments. The evolution of punctate structures around the periphery or throughout the whole microgels at pH 4.5 and 6.5 respectively was revealed by AFM, further illustrating the heterogeneous deswelling present in the ionized copolymer microgels.</div><div>The impact of this study and understanding how ionization state of copolymer dictates the overall structural properties of microgels will widen our understanding for their applications in biotechnology</div><div><b><br></b></div>


2019 ◽  
Vol 19 (3) ◽  
pp. 650 ◽  
Author(s):  
Triyanda Gunawan ◽  
Retno Puji Rahayu ◽  
Rika Wijiyanti ◽  
Wan Norharyati Wan Salleh ◽  
Nurul Widiastuti

Mixed Matrix Membranes (MMMs) which consist of 0.3 wt.% Zeolite-Carbon Composite (ZCC) dispersed in BTDA-TDI/MDI (P84 co-polyimide) have been prepared through phase inversion method by using N-methyl-2-pyrrolidone (NMP) as a solvent. Membranes were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Thermogravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR). Membrane performance was measured by a single gas permeation of CO2 and CH4. The maximum permeability of CO2 and CH4, which up to 12.67 and 6.03 Barrer, respectively. P84/ZCC mixed matrix membrane also showed a great enhancement in ideal selectivity of CO2/CH4 2.10 compared to the pure P84 co-polyimide membrane.


2018 ◽  
Author(s):  
Eva Le Run ◽  
Michel Arthur ◽  
Jean-Luc Mainardi

Mycobacterium abscessus has emerged as a significant pathogen responsible for chronic pulmonary infections in cystic fibrosis (CF) patients, which are difficult to treat due to resistance to a broad range of antibiotics. The initial phase of the recommended treatment in CF patients includes imipenem used without any β-lactamase inhibitor in spite of the production of the β-lactamase BlaMab. Here, we determine whether the addition of tedizolid, a once-daily oxazolidinone, improves the activity of imipenem alone or in combination with a β-lactamase inhibitor, avibactam, and rifabutin.The activity of the drugs was evaluated against M. abscessus CIP104536 by determining in vitro and intracellular antibacterial activities. The impact of BlaMab inhibition by avibactam on antibiotic activity was assessed by comparing CIP104536 and its β-lactamase-deficient derivative (ΔblaMab).The minimal inhibitory concentrations (MICs) of tedizolid against M. abscessus CIP104536 and ΔblaMab were 4 μg/mL. Tedizolid combined with imipenem showed a moderate synergistic effect with fractional inhibitory concentration (FIC) indexes of 0.41 and 0.38 for CIP104536 and ΔblaMab, respectively. For both strains, the addition of tedizolid at 2 μg/mL, corresponding to the peak serum concentration, increased the intracellular efficacy of imipenem at 8 and 32 μg/mL. Addition of avibactam and rifabutin improved the activity of the imipenem-tedizolid combination against CIP104536S.The imipenem-tedizolid combination should be further considered for the treatment of M. abscessus pulmonary infections in CF patients. The efficacy of the treatment might benefit from the use of a β-lactamase inhibitor, such as avibactam, and the addition of rifabutin.


Sign in / Sign up

Export Citation Format

Share Document