Investigation of the Effects of MK-801 on Oxidative Stress, Inflammation and Ghrelin Levels in Brain Tissue in Convulsions Caused by Scopolamine Administration and Feeding in Starving Mice

2021 ◽  
Keyword(s):  
2020 ◽  
Vol 21 (13) ◽  
pp. 1325-1332
Author(s):  
Mohammad Ahmad ◽  
Gasem M. Abu Taweel

Background: Developmental ethanol (EtOH) exposure can cause lifelong behavioral hyperactivity, cognitive deficits, emotional dysregulation, and more. However, co-treatment with lithium (Li) on the day of EtOH exposure prevents many of the impairments. Methods: Experimental groups of pregnant mice were exposed to EtOH (20% v/v solution at a dose of 2.5 g/kg) in their drinking water and the animals were treated with Li (15 and 30 mg/kg) through IP injection on gestational days14, 16, 18, and 20, and post-natal days (PD) 3, 5, 7, and 9. All treatments with EtOH and exposure to Li doses to pregnant mice started on gestational day 14 and continued until post-natal day 9 (PD9). The effects on some developing morphological indices, nerve reflexes during weaning age, and various cognitive dysfunctions at adolescent ages and biochemical changes in the brain tissue indices of below-mentioned neurotransmitters and oxidative stress in post-natal developing offspring at adolescent age, were studied. Results: Perinatal exposure to EtOH in pregnant mice resulted in several postnatal developing and morphological indices in the developing male pups during their weaning period, like gain in their body weight, delay in appearance of their body hair fuzz and opening of their eyes, and disruptions in their developing motor reflexes. Discussion: During adolescent age, a significant deficit in their learning capability and cognitive behavior, decline in the neurochemical DA and 5-HT in their brain and some indices of oxidative stress TBARS, GSH, GST, CAT, and SOD was observed. Conclusion: These results indicate that Li ameliorates significantly and dose-dependently EtOH induced developmental toxicities like morphological developments and dysfunctions in cognitive retention and oxidative stress on a long-term basis in brain tissue. However, further detailed studies are required for the clinical use of as an ameliorating agent for perinatal EtOH induced dysfunctions.


2020 ◽  
Vol 11 (1) ◽  
pp. 147-160
Author(s):  
Ranyah Shaker M. Labban ◽  
Hanan Alfawaz ◽  
Ahmed T. Almnaizel ◽  
Wail M. Hassan ◽  
Ramesa Shafi Bhat ◽  
...  

AbstractObesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Preeti Singh ◽  
Peter S. Hanson ◽  
Christopher M. Morris

Sirtuins are highly conserved lysine deacetylases involved in ageing, energy production, and lifespan extension. The mammalian SIRT2 has been implicated in Parkinson’s disease (PD) where studies suggest SIRT2 promotes neurodegeneration. We therefore evaluated the effects of SIRT2 manipulation in toxin treated SH-SY5Y cells and determined the expression and activity of SIRT2 in postmortem brain tissue from patients with PD. SH-SY5Y viability in response to oxidative stress induced by diquat or rotenone was measured following SIRT2 overexpression or inhibition of deacetylase activity, along withα-synuclein aggregation. SIRT2 in human tissues was evaluated using Western blotting, immunohistochemistry, and fluorometric activity assays. In SH-SY5Y cells, elevated SIRT2 protected cells from rotenone or diquat induced cell death and enzymatic inhibition of SIRT2 enhanced cell death. SIRT2 protection was mediated, in part, through elevated SOD2 expression. SIRT2 reduced the formation ofα-synuclein aggregates but showed minimal colocalisation withα-synuclein. In postmortem PD brain tissue, SIRT2 activity was elevated compared to controls but also elevated in other neurodegenerative disorders. Results from both in vitro work and brain tissue suggest that SIRT2 is necessary for protection against oxidative stress and higher SIRT2 activity in PD brain may be a compensatory mechanism to combat neuronal stress.


2021 ◽  
pp. 096032712110176
Author(s):  
MC Pereira ◽  
OB Adewale ◽  
S Roux ◽  
L Cairncross ◽  
H Davids

The application of gold nanoparticle-peptide conjugates as theranostic agents for colorectal cancer shows much promise. This study aimed at determining the neurotoxic impact of 14 nm gold nanoparticles (AuNPs) functionalized with colorectal cancer-targeting peptides (namely p.C, p.L or p.14) in a rat model. Brain tissue samples, obtained from Wistar rats that received a single injection of citrate-capped AuNPs, polyethylene glycol-coated (PEG) AuNPs, p.C-PEG-AuNPs, p.L-PEG-AuNPs or p.14-PEG-AuNPs, and sacrificed after 2- and 12-weeks, respectively, were analysed. Inflammation marker (tumour necrosis factor-α, interleukin-6, interleukin-1β), oxidative stress (superoxide dismutase, catalase, glutathione peroxidase) and apoptotic biomarker (cytochrome c, caspase-3) levels were measured. Gold nanoparticle-treated groups sacrificed after 2-weeks did not exhibit any significant inflammatory, oxidative stress or apoptotic effects in brain tissue compared to the untreated control group. In brain tissue from rats that were exposed to citrate-capped AuNPs for 12-weeks, tumour necrosis factor-α and interleukin-6 levels were significantly increased compared to the untreated control. Exposure to PEG-AuNP, p.C-PEG-AuNP, p.L-PEG-AuNP and p.14-PEG-AuNP did not elicit significant toxic effects compared to the control after 12-weeks, as evidenced by the absence of inflammatory, oxidative stress and apoptotic effects in brain tissue. We thus report on the safety of PEG-coated AuNP-peptide conjugates for potential application in the diagnosis of colorectal cancer; however, exposure to citrate-capped AuNPs could induce delayed neuro-inflammation, and as such, warrants further investigation.


2015 ◽  
pp. 1473 ◽  
Author(s):  
Haiyun Xu ◽  
Jin-hong Han ◽  
Hong-zhao Tian ◽  
Yang-yang Lian ◽  
Yi Yu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Junting Zhang ◽  
Hongwei Zhang ◽  
Liang Zhao ◽  
Zhanqi Zhao ◽  
Ying Liu

This study aimed to explore the effect and mechanism of lidocaine pretreatment combined with dexmedetomidine on oxidative stress in patients with intracranial aneurysm clipping. Many studies have used various drugs such as lidocaine to explore the effect and mechanism of lidocaine pretreatment. A total of 80 patients with intracranial aneurysm clipping surgery were randomly divided into 4 groups: the single lidocaine group, single dexmedetomidine group, lidocaine combined with dexmedetomidine group, and control group. The thread embolism method was used to establish a stable intracranial aneurysm model of Hashimoto rats. Fifty adult rats were randomly divided into a sham operation group, ligation of the left common carotid artery and bilateral posterior branch of renal artery, lidocaine group, dexmedetomidine group, and lidocaine combined with dexmedetomidine group. The colorimetric method was used to determine the oxidative stress indicators in brain tissue: MDA content, SOD activity, and T-AOC content. The western blot method characterized the protein levels related to oxidative stress: nNOS, iNOS, and NADPH oxidase subunits p22phox, gp91phox, and p47phox. The differences in each index between the groups were statistically significant ( P < 0.05 ). Animal experiment results revealed that the content of MDA in the brain tissue of rats in the LD group was significantly lower than that in the single-drug group and sham group. The T-AOC and SOD concentrations in the LD group were significantly higher than those in the single-drug group and sham group, and the differences between the groups were statistically significant ( P < 0.05 ). The protein expression of the LD group was significantly lower than that of the drug-alone group and model group, and the difference between groups was statistically significant ( P < 0.05 ). To sum up, lidocaine pretreatment combined with dexmedetomidine can effectively maintain the hemodynamic stability of patients with intracranial aneurysm clipping and reduce postoperative oxidative stress response. Its mechanism of action may be related to the inhibition of oxidative stress damage mediated by nNOS, iNOS, and p22phox, gp91phox, and p47phox in the hippocampus. Our study has significant and applicable medical aspects in lidocaine pretreatment combined with dexmedetomidine on oxidative stress in patients.


2019 ◽  
Vol 37 (4) ◽  
pp. 965-976 ◽  
Author(s):  
Zhara Hakimi ◽  
Hossein Salmani ◽  
Narges Marefati ◽  
Zohre Arab ◽  
Zahra Gholamnezhad ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 117-122
Author(s):  
Han Daicheng ◽  
Xia Shiwen ◽  
Zhu Huaping ◽  
Liu Yong ◽  
Zhou Qianqian ◽  
...  

AbstractBackgroundPresent investigation evaluates the beneficial effect of fangchinoline on cerebral ischemia induced neuronal degeneration in neonatal rats and also postulates the possible mechanism of its action.MethodologyCerebral ischemia was produced by the ligation of right common carotid artery in neonatal rats on postnatal day 5 (P5) and further pups were treated with fangchinoline 3, 10 and 30 mg/kg, i.p. for the period of 3 days. Effect of fangchinoline was estimated by determining the brain injury and enzyme linked immunosorbent assay (ELISA) method was used for the estimation of pro-inflammatory mediators and markers of oxidative stress in the cerebral tissues of neonatal rats. Moreover western blot assay and histopathology study was also performed on the brain tissue.ResultsResult of this investigation reveals that the percentage of brain injury significantly reduces and enhancement of myelin basic protein in the cerebral tissues of fangchinoline than ischemic group. Treatment with fangchinoline attenuates the altered level of proinflammatory mediators and markers of oxidative stress in the cerebral tissue of cerebral ischemia induced neuronal injury neonatal rats. Moreover expressions of inducible nitric oxide synthtase (iNOS), vascular endothelial growth factor (VEGF), p53 and nuclear receptor factor-2 (Nrf2) in the brain tissue attenuated by fangchinoline treated group.ConclusionIn conclusion, fangchinoline ameliorates the cerebral ischemia induced neuronal injury in neonatal rats by enhancing angiogenesis molecules.


Sign in / Sign up

Export Citation Format

Share Document