scholarly journals Pingos of the Tuktoyaktuk Peninsula Area, Northwest Territories

2011 ◽  
Vol 33 (1) ◽  
pp. 3-61 ◽  
Author(s):  
J. Ross Mackay

Most pingos have grown in residual ponds left behind by rapid lake drainage through erosion of ice-wedge polygon systems. The field studies (1969-78) have involved precise levelling of numerous bench marks, extensive drilling, detailed temperature measurements, installation of water pressure transducers below permafrost and water (ice) quality, soil, and many other analyses. Precise surveys have been carried out on 17 pingos for periods ranging from 3 to 9 years. The field results show that permafrost aggradation in saturated lake bottom sediments creates the high pore water pressures necessary for pingo growth. The subpermafrost water pressures frequently approach that of the total litho-static pressure of permafrost surrounding a pingo. The water pressure is often great enough to lift a pingo and intrude a sub-pingo water lens beneath it. The basal diameter of a pingo is established in early youth after which time the pingo tends to grow higher, rather than both higher and wider. The shutoff direction of freezing is from periphery to center. When growing pingos have both through going taliks and also permeable sediments at depth, water may be expelled downwards by pore water expulsion from freezing and consolidation from self loading on saturated sediments. Pingos can rupture from bursting of the sub-pingo water lens. Otherwise, pingo failure is at the top and periphery. Hydraulic fracturing is probably important in some pingo failures. Water loss from sub-pingo water lenses causes subsidence with the subsidence pattern being the mirror image of the growth pattern; i.e. greatest subsidence at the top. Small peripheral bulges may result from subsidence. Old pingos collapse from exposure of the ice core to melting by overburden rupture, by mass wasting, and by permafrost creep of the sides.

1973 ◽  
Vol 10 (6) ◽  
pp. 979-1004 ◽  
Author(s):  
J. Ross Mackay

The growth rates of 11 closed system pingos have been measured, by means of precise levelling of permanent bench marks anchored well down into permafrost, for the 1969–1972 period. As pingo growth decreases from the summit to the base, growth of the ice-core decreases from the center out to the periphery. The pingos have grown up in the bottoms of lakes which have drained rapidly and thus become exposed to permafrost aggradation. The specific site of growth is usually in a small residual pond where permafrost aggradation is retarded. The size and shape of a residual pond exercises a strong control upon the size and shape of the pingo which grows within it. The ice-core thickness equals the sum of the pingo height above the lake flat and the depth of the residual pond in which the pingo grew. Pingos tend to grow higher rather than both higher and wider. Pingos are believed to grow more by means of ice segregation than by the freezing of a pool of water. The water source, and the associated positive pore water pressure, result from permafrost aggradation in sands and silts in the lake bottom under a closed system with expulsion of pore water. The fastest growth rate of an ice-core, for the Western Arctic Coast, is estimated at about 1.5 m/yr, for the first one or two years. After that, the growth rate decreases inversely as the square root of time. The largest pingos may continue to grow for more than 1000 yr. Four growth stages are suggested. At least five pingos have commenced growth since 1935. As an estimate, probably 50 or more pingos are now growing along the coast.


2021 ◽  
Vol 27 (12) ◽  
pp. 1-12
Author(s):  
Haider N. Abdul Hussein ◽  
Qassun S. Mohammed Shafiqu ◽  
Zeyad S. M. Khaled

Experimental model was done for pile model of L / D = 25 installed into a laminar shear box contains different saturation soil densities (loose and dense sand) to evaluate the variation of pore water pressure before and after apply seismic loading. Two pore water pressure transducers placed at position near the middle and bottom of pile model to evaluate the pore water pressure during pullout tests. Seismic loading applied by uniaxial shaking table device, while the pullout tests were conducted through pullout device. The results of changing pore water pressure showed that the variation of pore water pressure near the bottom of pile is more than variation near the middle of pile in all tests. The variation of pore water pressure after apply seismic loading is more than the variation before apply seismic loading near the middle of pile and near the bottom of pile and in loose and dense sand. Variation of pore water pressure after apply seismic loading and uplift force is less than the variation after apply seismic loading in loose sand at middle and bottom of pile.


1993 ◽  
Vol 30 (3) ◽  
pp. 491-505 ◽  
Author(s):  
Delwyn G. Fredlund ◽  
Zai Ming Zhang ◽  
Karen Macdonald

The stability of potash tailings piles is investigated using a pore-water pressure generation and dissipation model together with a limit equilibrium analysis. It is found that a shallow toe failure mode is generally the most applicable and that the stability may be influenced by pore-water pressure migration below the pile. It is suggested that field studies would be useful in evaluating stability in the toe region of the pile. Key words : potash tailings, slope stability, pore pressure dissipation, solutioning.


2021 ◽  
Vol 3 (1) ◽  
pp. 48-58
Author(s):  
Nanang Sutisna ◽  
M. Ichwanul Yusup ◽  
Euis Amilia Euis Amilia

The development of science and technology has obtained supporting technology for monitoring the soil shear force and pore water pressure in the dam, the presence of shear forces against the landfill and pore water pressure through small cavities in the embankment soil in the dam body which can be detected by equipment such as inclinometer and piezometer that have been installed at predetermined points. The application of inclinometer and piezometer technology is used as a support tool for monitoring the movement of landfill and pore water pressure against dams. The embankment dam is the most complex of civilian structures and is very dangerous if damaged. When there is damage to a dam, it will cause a big disaster for the areas that are downstream of the dam. Damage or collapse of a dam can occur due to several things, including overtopping, sliding of the dam slopes (internal erosion or "piping"), and the occurrence of structural degradation of each zone. on the dam body. In the analysis of the stability of the embankment (maindam) which is based on geotechnical instrument data, it must be carried out as carefully and accurately as possible. The purpose of this analysis is to measure the early damage in the main dam (maindam). After conducting research and field studies at the Sindang Heula dam, there were several points of decline at the top of the core embankment (maindam). To find out the cause of the decline, data was taken from measuring geotechnical instruments.


1994 ◽  
Vol 74 (3) ◽  
pp. 315-319 ◽  
Author(s):  
R. H. Azooz ◽  
M. A. Arshad

Pressure transducer-tensiometer (PTT) systems can be used to continuously monitor soil pore water pressure and the hydraulic gradient distribution in a field, and under laboratory conditions over relatively short time intervals. A reliable laboratory calibration of a PTT system can determine the effects of temperature fluctuations on output readings in the field. Laboratory calibrations of 20 PTTs were conducted under constant pressures of 0, − 25, − 50 and − 75 kPa and constant temperatures of 5, 15, 25 and 48 °C. Twenty Bourdon gauge tensiometers (BGTs) and pressure transducers (PTs) were also calibrated to check changes in the sensitivity and effectiveness of the PTT system, when the Bourdon gauge of the tensiometer is replaced by a PT. Readings of all the three systems revealed that pressure values gradually declined with an increase in temperature. With a temperature change from 5 to 48 °C, the pressure values at constant pressures of 0, − 25, − 50 and − 75 kPa decreased by 0, 3.7, 4.1 and 4.5 kPa for the BGT; 2.05, 2.16, 2.23 and 2.44 kPa for PT and 2.53, 2.87, 2.88 and 3.17 kPa for PTT. As the influence of temperature on the calibration curve of the PTT and PT systems was different, it is recommended that the complete PTT system should be calibrated in the laboratory to adjust the output readings to the anticipated temperature in the field. Key words: Tensiometer, tensiometer-pressure transducer, soil pore water pressure, hydraulic gradient


1977 ◽  
Vol 14 (2) ◽  
pp. 209-222 ◽  
Author(s):  
J. Ross Mackay

Field studies have been carried out on two pingos on Tuktoyaktuk Peninsula, N.W.T. One pingo was studied from 1969–1976; the other was studied from 1974–1976. Precise levelling of bench marks in permafrost shows that the tops of these pingos alternately rise and subside in response to the rate of accumulation and loss of water beneath them. The water lenses may exceed 50 cm in depth. The high pore water pressure that causes pingo uplift is produced by pore water expulsion adjacent to the pingo, where the thickness of permafrost is 2 to 3 times the pingo height. The pore water pressure beneath the permafrost surrounding the pingo may approach 100% of the lithostatic pressure. When uplift from the water lens exceeds the strength of the pingo, peripheral failure occurs, water escapes as a spring, and the pingo subsides. Pulsating pingos seem characterized by long radial tension cracks which extend far onto the drained lake floor.The pulsation of pingos has also been experimentally achieved by drilling holes through two pingos to release spring flow from subpingo pore water. The field evidence, from precise before-and-after surveys, indicates that the two pingos and their adjacent drained lake floors are virtually 'afloat' on subpermafrost water.


Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2018 ◽  
Vol 35 (2) ◽  
pp. 111
Author(s):  
Kun ZHANG ◽  
Ze ZHANG ◽  
Xiangyang SHI ◽  
Sihai LI ◽  
Donghui XIAO

Sign in / Sign up

Export Citation Format

Share Document