scholarly journals Study into the Development of a Light Weight Smart Life Buoy Prototype (LWSLB)

2021 ◽  
Vol 10 (2) ◽  
pp. 383-389
Author(s):  
Suresh Thanakodi ◽  
Muhamad Lazim Talib ◽  
Syarifah Aishah Syed Ali ◽  
Norshahriah Abdul Wahab ◽  
Amalina Farhi Ahmad ◽  
...  

Life Buoy, also known as a life preserver, is a crucial safety tool on board any marine ships. The most common and conventional lifesaver is operated manually to save people from drowning, yet this method poses a risk for both the victim and rescuer. Hence, with the help of current technology, a smart lifebuoy has been developed, whereby the rescuer just operates the lifebuoy using remote control. Yet, the existing smart life buoy system has been found heavy and hard to be operated, especially for women, children, and other people with disabilities.This paper focuses on the development of a lightweight smart life buoy system and its characteristics.  Arduino Uno R3, Arduino Nano, DC motor 775, Transmitter and Receiver kit were the main components used in the development of the lightweight smart life buoy system (LWSLB). The developed LWSLB system was tested at the National Defence University of Malaysia’ swimming pool due to Covid-19 lockdown, and data such as speed, range of remote connection and battery endurance were obtained. It has been found out that the developed LWSLB weighs just 3.5kg overall compared to Brand S which weighs 13.75kg. However, in terms of speed, Brand S proves to be faster at 4.17m/s compared to LWSLB which exhibits a speed of 1.25m/s.

Author(s):  
M. Khairul Amri Rosa ◽  
Reza Satria Rinaldi ◽  
Ridho Illahi

ABSTRACTThis research develops a prototype of a remotely controlled lawn mower using Android smartphone with Bluetooth connection to avoid the risk of accidents. The lawn mower is controlled by an Android application developed with Mit App Inventor using HC-05 Bluetooth module connection. This prototype uses a DC motor as a driving motor to rotate the blade with an LM393 speed sensor using Arduino Uno microcontroller. The developed system is equipped with an option of grass height that can be adjusted. The test of HC-05 Bluetooth module resulted the maximum acceptable connection distance in the open space is 80 m and the maximum connection distance with a barrier is 10.45 m. DC motor speed tests are carried out on the lawn mowers at no load and loaded conditions. The results showed a slight decrease in motor speed at the grass height of 6 cm and 4 cm, but at 2 cm height the rotation dropped significantly.Keywords: lawn mower, remote control, Arduino Uno, Bluetooth, Android


2016 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Potnuru Devendra ◽  
Mary K. Alice ◽  
Ch. Sai Babu ◽  
◽  
◽  
...  

2020 ◽  
Vol 4 (2) ◽  
pp. 8-11
Author(s):  
Diarsyah Amarullah ◽  
Mochammad Djaohar ◽  
Massus Subekti

Abstract The purpose of this research is to design of the speed regulation of an arduino uno based seri DC motor using a DC-DC converter (Boost Converter). This research uses research and development method. The research subjects used are seri DC motor. Data analysis technique used is descriptive analysis with data collection technique that is laboratory observation using test instrument. The conclusion of this research is using a DC-DC converter or boost converter can move seri DC motor loads inertia to which has a maximum voltage of 24 V from the start supply to the boost converter which is 12 V so that the voltage increases twice. Other than that in terms of setting the DC motor speed is influenced by the amount of duty cycle controlled via by arduino uno microcontroller. ABSTRAK Tujuan penelitian ini adalah untuk membuat rancang bangun pengaturan kecepatan motor DC seri berbasis arduino uno dengan menggunakan DC-DC converter (Boost Converter). Penelitian ini menggunakan metode riset dan pengembangan. Subyek penelitian yang digunakan yaitu motor DC seri. Teknik analisis data yang digunakan yaitu analisis deskriptif dengan teknik pengumpulan data yaitu observasi laboratorium menggunakan instrumen pengujian. Kesimpulan dari penelitian ini adalah dengan menggunakan DC-DC converter atau boost converter bisa menggerakan beban inersia pada motor DC seri yang memiliki tegangan maximal 24 V, dari supply awal ke boost converter yaitu 12 V sehingga tegangan meningkat dua kali. Selain itu dalam hal pengaturan kecepatan motor DC dipengaruhi besaran duty cycle yang dikontrol melalui mikrokontroler arduino uno.


Jurnal Teknik ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Sumardi Sadi

DC motors are included in the category of motor types that are most widely used both in industrial environments, household appliances to children's toys. The development of control technology has also made many advances from conventional control to automatic control to intelligent control. Fuzzy logic is used as a control system, because this control process is relatively easy and flexible to design without involving complex mathematical models of the system to be controlled. The purpose of this research is to study and apply the fuzzy mamdani logic method to the Arduino uno microcontroller, to control the speed of a DC motor and to control the speed of the fan. The research method used is an experimental method. Global testing is divided into three, namely sensor testing, Pulse Width Modulation (PWM) testing and Mamdani fuzzy logic control testing. The fuzzy controller output is a control command given to the DC motor. In this DC motor control system using the Mamdani method and the control system is designed using two inputs in the form of Error and Delta Error. The two inputs will be processed by the fuzzy logic controller (FLC) to get the output value in the form of a PWM signal to control the DC motor. The results of this study indicate that the fuzzy logic control system with the Arduino uno microcontroller can control the rotational speed of the DC motor as desired.


2019 ◽  
Vol 1 (2) ◽  
pp. 51-58
Author(s):  
Sanji Muhammad Sidik ◽  
Hermawaty Hermawaty

Clothesline that is used in the community is still in the form of a manual so that the community must raise it directly. People who have more interests or who work may not have to raise clothes directly so they have to leave their more important work. When traveling or there are other jobs the community is still confused how to pick up clothesline with changing weather. From these problems, a prototype model of automatic clothesline was built using Android-based Arduino, this is to simplify and shorten the time in lifting clothesline or drying clothes when our weather changes. Having designed an automatic clothesline using Android-based Arduino. In this study, the Arduino UNO microcontroller functions as a data processing center obtained from the LDR sensor to detect light, uses a water sensor to detect rainwater and uses a DC motor to move the clothesline out / in, and uses the Bluetooth HC-05 module to move the clothesline with Android. The test results show that this tool works well, when the device is turned on the sensor will check the weather outside whether the weather is sunny or rainy. When the weather is sunny or hot outside, the clothesline will automatically come out and if the weather outside is raining, the clothesline will automatically go inside. When the sensor does not function or has trouble the automatic clothesline can be controlled via a smartphone that is connected to the Bluetooth HC-05 module.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 655
Author(s):  
Mrs M. Kavitha ◽  
Y Manideep ◽  
M Vamsi Krishna ◽  
P Prabhuram

This task displays the development Speech Controlled Home Mechanization Framework Using Android Gadgets of home apparatuses in light-weight of voice order utilizing humanoid. This technique has been meant to help and provides the help to senior and unfit individual’s reception. Recent voice based applications provide acknowledges the voice contribution from the advanced transportable. During this venture, the voice input has been caught by the ports and might be sent to the Arduino Uno. HC 05 module in Arduino Uno got the flag and handled the information flag to manage the two power sockets and fan. The proposed framework expected to manage electrical devices with general user friendly interface and easy transnational. In this project we have a tendency to gift associate humanoid OS based mostly application for smartphone that speaks with the fan through mobile phone persistently to manage the FAN speed. The humanoid stage assumes a key half to holds a most extreme range of users once contrasted with all different stage. We have got exhibited up to twenty meter of vary to manage the house apparatuses by suggests that of Bluetooth.  


Sign in / Sign up

Export Citation Format

Share Document