Low-Cost Commercial Lego™ Platform for Mobile Robotics

2010 ◽  
Vol 47 (2) ◽  
pp. 132-150 ◽  
Author(s):  
Erik Cuevas ◽  
Daniel Zaldivar ◽  
Marco Pérez-Cisneros

This paper shows the potential of a Lego™-based low-cost commercial robotic platform for learning and testing prototypes in higher education and research. The overall set-up aims to explain mobile robotic issues, including mechatronics, robotics and automatic control theory. The capabilities and limitations of Lego robots are studied within two experiments: the first shows how to eliminate a number of restrictions in Lego robots using some programming alternatives; the second addresses the complex problem of multi-position control. Algorithms and their additional tools have been fully designed, applied and documented, and the results are shown throughout the paper. The platform was found to be suitable for teaching and researching key issues related to the aforementioned fields.

2020 ◽  
pp. 101-111
Author(s):  
Gonzalo Perez-Paina ◽  
Claudio Paz ◽  
Martín Pucheta ◽  
Bruno Bianchini ◽  
Fernando Martínez ◽  
...  

The integration of down-looking camera with an in-ertial measurement unit (IMU) sensor makes possible to provide a lightweight and low-cost pose estimation system for unmanned aerial vehicles (UAVs) and micro-UAVs (MAVs). Recently, the authors developed an algorithm for IMU and exteroceptive sensor fusion filter for position and orientation estimation. The aim of the estimation is to be used in the outer control loop of an UAV for position control. This work presents an experimental set up to test that algorithm using an industrial robot to produce accurate planar trajectories as a safe alternative to testing the algorithm on real UAVs. The results of the IMU-camera fusion estimation for linear positions and linear velocities show an error admissible to be integrated on real UAVs.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


2017 ◽  
Vol 26 (50) ◽  
pp. 115
Author(s):  
Marcelo Da Silva Leite ◽  
Celeste Gaia

Over the past decade due the expansion of globalization there has been an increasing emphasis on internationalization among faculty, administration and accrediting agencies in the Higher Education.  Although to promote internationalization in the Higher Education, costs are a big challenge, one way to have the international actions with low cost, it is seeking for grants from different governmental agencies and foundations.The Fulbright Scholar program provides a long-standing and externally-funded means for internationalizing college and university curriculum. This article is going to share the perspective   of a Brazilian Fulbright Scholar at an American college and the institution perspective of the Fulbright scholar participation at the College.


Author(s):  
Binh Nguyen

Abstract For those attempting fault isolation on computer motherboard power-ground short issues, the optimal technique should utilize existing test equipment available in the debug facility, requiring no specialty equipment as well as needing a minimum of training to use effectively. The test apparatus should be both easy to set up and easy to use. This article describes the signal injection and oscilloscope technique which meets the above requirements. The signal injection and oscilloscope technique is based on the application of Ohm's law in a short-circuit condition. Two experiments were conducted to prove the effectiveness of these techniques. Both experiments simulate a short-circuit condition on the VCC3 power rail of a good working PC motherboard and then apply the signal injection and oscilloscope technique to localize the short. The technique described is a simple, low cost and non-destructive method that helps to find the location of the power-ground short quickly and effectively.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Hanxiang Chen ◽  
Jianjian Yi ◽  
Zhao Mo ◽  
Yanhua Song ◽  
Wenshu Yang ◽  
...  

Abstract Photocatalysis technology has potential application in the field of energy and environment. How to expand visible light utilization and promote the separation efficiency of the carriers are the key issues for the high active photocatalysts preparation and future practical applications. In this work, a ternary metal sulfide Nb0.9Ta0.1S2 was prepared and used as an electron collector in the photocatalytic application. As a result, the generated electrons are quickly transferred to the surface of the composite to participate in the reaction. It was demonstrated that the photocatalytic activity of 2D-C3N4 was enhanced after the modification of Nb0.9Ta0.1S2. The Nb0.9Ta0.1S2/2D-C3N4 composite material was synthesized by solvothermal method. The composition of 5% Nb0.9Ta0.1S2/2D-C3N4 showed the highest H2 evolution rate of 1961.6 μmolg−1h−1, which was 6.6 times that of 2D-C3N4. The 15% Nb0.9Ta0.1S2/2D-C3N4 exhibited the best activity in Rhodamine B degradation rate of 97% in 2 h, which is 50% higher than that of 2D-C3N4. Nb0.9Ta0.1S2/2D-C3N4 can be used as electron trap to promote the effective separation of electron–hole pairs. This work provides benchmarks in exploring low-cost and efficient cocatalyst.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
M Papadakaki ◽  
F Sarakatsianou ◽  
V Tsismeli ◽  
G Lapidakis ◽  
M Karapiperaki

Abstract Background Increasing the capacity of higher education institutes to address students' vulnerabilities has been deemed necessary due to the financial crisis. Multilevel interventions have thus been initiated at the Hellenic Mediterranean University of Crete, as part of a project co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme <<Human Resources Development, Education and Lifelong Learning 2014- 2020 >> (MIS 5045937). The project aims to offer support to students with low family income or a certified disability, monitor their bio-psychosocial needs, increase their accessibility to health and psychosocial care, and improve their academic outcomes. Methods As part of the project, a primary health care unit has been set up to offer medical and nursing care (medical unit) as well as psychosocial support (counseling centre) to students in need. An observatory has also been set up to monitor their health and psychosocial needs and their academic progress. Results A total of 228 eligible students used the services in the second half of 2019 (counseling centre 37; medical unit 191). Out of the 37 individuals who used the counseling centre, 30 (81.0%) were female and 16 (43.2%) were at the first 2 years of their studies. A total of 36 (97.3%) requested psychological support, 6 (16.2%) warranted social welfare services and 1 (2.7%) support for learning disabilities. As for the 191 individuals who used the medical services, 101 (52.8%) were male and 88 (46.0%) were at first 2 years of their studies. Most of them had a health examination to receive a health certificate (74.8%) followed by those who received emergency care (e.g. respiratory infection, allergic reaction, injury, etc), chronic disease management and medicine subscription, as well as vaccination. Conclusions Complex bio-psychosocial needs have been identified, recorded and analyzed to explain the academic progress of socially vulnerable students. Key messages The students’ journey through medical and counseling services is being mapped to offer important information for educational policy. Assessment and monitoring of students’ complex needs are important to achieve quality in higher education.


2012 ◽  
Vol 497 ◽  
pp. 89-93
Author(s):  
Liang Liang Yuan ◽  
Ke Hua Zhang ◽  
Li Min

In order to process heterotype hole of workpiece precisely, an open abrasive flow polish machine is designed, and the optimization design of machine frame is done for low cost. Firstly, basing on the parameters designed with traditional ways, three-dimensional force model is set up with the soft of SolidWorks. Secondly, the statics and modal analysis for machine body have been done in Finite element methods (FEM), and then the optimization analysis of machine frame has been done. At last, the model of rebuild machine frame has been built. Result shows that the deformation angle value of machine frame increased from 0.72′ to 1.001′, the natural frequency of the machine decreased from 75.549 Hz to 62.262 Hz, the weight of machine decreased by 74.178 Kg after optimization. It meets the strength, stiffness and angel stiffness requirement of machine, reduces the weight and cost of machine.


Landslides ◽  
2021 ◽  
Author(s):  
Lorenzo Brezzi ◽  
Alberto Bisson ◽  
Davide Pasa ◽  
Simonetta Cola

AbstractA large number of landslides occur in North-Eastern Italy during every rainy period due to the particular hydrogeological conditions of this area. Even if there are no casualties, the economic losses are often significant, and municipalities frequently do not have sufficient financial resources to repair the damage and stabilize all the unstable slopes. In this regard, the research for more economically sustainable solutions is a crucial challenge. Floating composite anchors are an innovative and low-cost technique set up for slope stabilization: it consists in the use of passive sub-horizontal reinforcements, obtained by coupling a traditional self-drilling bar with some tendons cemented inside it. This work concerns the application of this technique according to the observational method described within the Italian and European technical codes and mainly recommended for the design of geotechnical works, especially when performed in highly uncertain site conditions. The observational method prescribes designing an intervention and, at the same time, using a monitoring system in order to correct and adapt the project during realization of the works on the basis of new data acquired while on site. The case study is the landslide of Cischele, a medium landslide which occurred in 2010 after an exceptional heavy rainy period. In 2015, some floating composite anchors were installed to slow down the movement, even if, due to a limited budget, they were not enough to ensure the complete stabilization of the slope. Thanks to a monitoring system installed in the meantime, it is now possible to have a comparison between the site conditions before and after the intervention. This allows the evaluation of benefits achieved with the reinforcements and, at the same time, the assessment of additional improvements. Two stabilization scenarios are studied through an FE model: the first includes the stabilization system built in 2015, while the second evaluates a new solution proposed to further increase the slope stability.


Author(s):  
Roberto J. López-Sastre ◽  
Marcos Baptista-Ríos ◽  
Francisco Javier Acevedo-Rodríguez ◽  
Soraya Pacheco-da-Costa ◽  
Saturnino Maldonado-Bascón ◽  
...  

In this paper, we present a new low-cost robotic platform that has been explicitly developed to increase children with neurodevelopmental disorders’ involvement in the environment during everyday living activities. In order to support the children and youth with both the sequencing and learning of everyday living tasks, our robotic platform incorporates a sophisticated online action detection module that is capable of monitoring the acts performed by users. We explain all the technical details that allow many applications to be introduced to support individuals with functional diversity. We present this work as a proof of concept, which will enable an assessment of the impact that the developed technology may have on the collective of children and youth with neurodevelopmental disorders in the near future.


Sign in / Sign up

Export Citation Format

Share Document