scholarly journals Isolation and Functional Identification of BrDSR, a New Gene Related to Drought Tolerance Derived from Brassica rapa

2015 ◽  
Vol 33 (4) ◽  
pp. 575-584 ◽  
Author(s):  
Jae-Gyeong Yu ◽  
Young-Doo Park
Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 404 ◽  
Author(s):  
Muthusamy Muthusamy ◽  
Joo Yeol Kim ◽  
Eun Kyung Yoon ◽  
Jin A. Kim ◽  
Soo In Lee

Expansins are structural proteins prevalent in cell walls, participate in cell growth and stress responses by interacting with internal and external signals perceived by the genetic networks of plants. Herein, we investigated the Brassica rapa expansin-like B1 (BrEXLB1) interaction with phytohormones (IAA, ABA, Ethephon, CK, GA3, SA, and JA), genes (Bra001852, Bra001958, and Bra003006), biotic (Turnip mosaic Virus (TuMV), Pectobacterium carotovorum, clubroot disease), and abiotic stress (salt, oxidative, osmotic, and drought) conditions by either cDNA microarray or qRT-PCR assays. In addition, we also unraveled the potential role of BrEXLB1 in root growth, drought stress response, and seed germination in transgenic Arabidopsis and B. rapa lines. The qRT-PCR results displayed that BrEXLB1 expression was differentially influenced by hormones, and biotic and abiotic stress conditions; upregulated by IAA, ABA, SA, ethylene, drought, salt, osmotic, and oxidative conditions; and downregulated by clubroot disease, P. carotovorum, and TuMV infections. Among the tissues, prominent expression was observed in roots indicating the possible role in root growth. The root phenotyping followed by confocal imaging of root tips in Arabidopsis lines showed that BrEXLB1 overexpression increases the size of the root elongation zone and induce primary root growth. Conversely, it reduced the seed germination rate. Further analyses with transgenic B. rapa lines overexpressing BrEXLB1 sense (OX) and antisense transcripts (OX-AS) confirmed that BrEXLB1 overexpression is positively associated with drought tolerance and photosynthesis during vegetative growth phases of B. rapa plants. Moreover, the altered expression of BrEXLB1 in transgenic lines differentially influenced the expression of predicted BrEXLB1 interacting genes like Bra001852 and Bra003006. Collectively, this study revealed that BrEXLB1 is associated with root development, drought tolerance, photosynthesis, and seed germination.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 182 ◽  
Author(s):  
Muthusamy ◽  
Yoon ◽  
Kim ◽  
Jeong ◽  
Lee

The emerging evidence has shown that plant serine/arginine-rich (SR) proteins play a crucial role in abiotic stress responses by regulating the alternative splicing (AS) of key genes. Recently, we have shown that drought stress enhances the expression of SR45a (also known as SR-like 3) in Brassica rapa. Herein, we unraveled the hitherto unknown functions of BrSR45a in drought stress response by comparing the phenotypes, chlorophyll a fluorescence and splicing patterns of the drought-responsive genes of Arabidopsis BrSR45a overexpressors (OEs), homozygous mutants (SALK_052345), and controls (Col-0). Overexpression and loss of function did not result in aberrant phenotypes; however, the overexpression of BrSR45a was positively correlated with drought tolerance and the stress recovery rate in an expression-dependent manner. Moreover, OEs showed a higher drought tolerance index during seed germination (38.16%) than the control lines. Additionally, the overexpression of BrSR45a induced the expression of the drought stress-inducible genes RD29A, NCED3, and DREB2A under normal conditions. To further illustrate the molecular linkages between BrSR45a and drought tolerance, we investigated the AS patterns of key drought-tolerance and BrSR45a interacting genes in OEs, mutants, and controls under both normal and drought conditions. The splicing patterns of DCP5, RD29A, GOLS1, AKR, U2AF, and SDR were different between overexpressors and mutants under normal conditions. Furthermore, drought stress altered the splicing patterns of NCED2, SQE, UPF1, U4/U6-U5 tri-snRNP-associated protein, and UPF1 between OEs and mutants, indicating that both overexpression and loss of function differently influenced the splicing patterns of target genes. This study revealed that BrSR45a regulates the drought stress response via the alternative splicing of target genes in a concentration-dependent manner.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shigui Li ◽  
Ning Zhang ◽  
Xi Zhu ◽  
Rui Ma ◽  
Shengyan Liu ◽  
...  

The nuclear factor Y (NF-Y) family is comprised of transcription factors that have been implicated in multiple plant biological processes. However, little is known about this family in potato. In the present study, a total of 41 StNF-Y genes were identified in the potato genome. In addition, the phylogenetic, gene structure, motif, and chromosomal location of this family were analyzed. The tissue expression profiles based on RNA-seq data showed that 27 StNF-Y genes had tissue-specific expression, while the remaining 14 had low expression in all tissues. Publicly available transcriptomics data from various abiotic stresses revealed several stress-responsive StNF-Y genes, which were further verified via quantitative real-time polymerase chain reaction experiments. Furthermore, the StNF-YC9 gene was highly induced by dehydration and drought treatments. StNF-YC9 protein was mainly localized in the nucleus and cytoplasmic membrane. Overexpressing StNF-YC9 potato lines (OxStNF-YC9) had significantly increased in root length and exhibited stronger stomatal closure in potato treated by polyethylene-glycol and abscisic acid. In addition, OxStNF-YC9 lines had higher photosynthetic rates and decreased water loss under short-term drought stress compared to wild-type plants. During long-term drought stress, OxStNF-YC9 lines had higher proline levels, lower malondialdehyde content, and increased activity of several antioxidant enzymes, including superoxide dismutase, catalase, and peroxidase. This study increased our understanding of the StNF-Y gene and suggested that StNF-YC9 played an important role in drought tolerance by increased the photosynthesis rate, antioxidant enzyme activity, and proline accumulation coupled to lowered malondialdehyde accumulation in potato.


2013 ◽  
Vol 40 (7) ◽  
pp. 690 ◽  
Author(s):  
Yi Ming Guo ◽  
Sheng Chen ◽  
Matthew N. Nelson ◽  
Wallace Cowling ◽  
Neil C. Turner

Leaf canopy temperature has been proposed as a rapid selection tool for drought tolerance among crop genotypes. However, floral bud temperature may be a better indicator of drought tolerance than leaf temperature in grain crops. In this study, we examined whether the floral bud and leaves of Brassica rapa L. had similar stomatal characteristics and showed similar water loss during a drying cycle. We also compared the leaf and bud temperatures when the plants were exposed to a 10-day transient water stress during reproductive development that affected flower development, increased flower abortion, increased pod abortion and reduced yield by an average of 85%. The water loss of detached leaves and floral buds showed that the stomata on the leaves closed before those of the floral buds as the leaf water potential decreased. Consistent with the water loss studies, the temperature of the intact bud showed a delayed increase during the drying process compared with the leaves. This suggested that floral bud temperature could be a useful indicator of the water status of the reproductive organs of B. rapa.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


Sign in / Sign up

Export Citation Format

Share Document