scholarly journals ALBIS: integrated system for risk-based surveillance of invasive mosquito Aedes albopictus

Author(s):  
Milan P. Antonovic ◽  
Massimiliano Cannata ◽  
Andrea Danani ◽  
Lukas Engeler ◽  
Eleonora Flacio ◽  
...  

According to predictions bases on a climate-driven large-scale model the areas surrounding Lake Léman and, to some extent, the Swiss Plateau are suitable for the spread of Ae. albopictus North of the Alps, while other areas in Switzerland (e.g., the city of Zürich) seem currently too cold in winter for the survival of eggs. However, this model does not take into account particular micro-climate conditions in urban areas where the specie thrives. Climate conditions in urban micro-habitats (in particular catch basins) increase the probability of the survival of diapausing eggs in the winter season favoring the colonization of new cities that were thought to be too cold for the survival of the eggs. Therefore, there is an urgent need for appropriate monitoring tools and risk-based surveillance of Ae. albopictus populations. In 2018 a multidisciplinary group of researchers from the University of Applied Sciences and Arts of Southern Switzerland (SUPSI) has joined launching the project ALBIS (Albopictus Integrated System). The designed system focuses on the monitoring of urban catch basins, primarily on micro-climate environmental sensing, data transmission, data acquisition and data dissemination. The gathered data are the input for an empirical machine learning model for the prediction of spatial and temporal distribution of the Ae. albopictus. The first real time monitoring tests are in progress in the pilot area in the city of Lugano in the Canton Ticino. Fully functional prototypes have been engineered by the Institute of Earth Science in collaboration with a local electronics manufacturer (TECinvent) combined with the Open Source istSOS OGC Sensor Observation Service software for data acquisition and dissemination, and in the first tests cases have demonstrated good quality in terms of energy efficiency, data quality and data transmission reliability. The first results demonstrated that temperature in catch basins can be different from outside temperature that is detected by traditional terrain measures: in February 2018 during a period of cold air temperature in Canton Ticino of down to -8°C, the prototype sensor monitoring the catch basins' wall surface shows temperatures up to 6°C higher. Considering that one of the Ae. albopictus establishment thresholds is to have a mean January temperature of >0°C to allow egg overwintering, taking into account this micro-climate environments could lead to more realistic predictions.

2018 ◽  
Author(s):  
Milan P. Antonovic ◽  
Massimliano Cannata ◽  
Andrea Danani ◽  
Lukas Engeler ◽  
Eleonora Flacio ◽  
...  

According to predictions bases on a climate-driven large-scale model the areas surrounding Lake Léman and, to some extent, the Swiss Plateau are suitable for the spread of Ae. albopictus North of the Alps, while other areas in Switzerland (e.g., the city of Zürich) seem currently too cold in winter for the survival of eggs. However, this model does not take into account particular micro-climate conditions in urban areas where the specie thrives. Climate conditions in urban micro-habitats (in particular catch basins) increase the probability of the survival of diapausing eggs in the winter season favoring the colonization of new cities that were thought to be too cold for the survival of the eggs. Therefore, there is an urgent need for appropriate monitoring tools and risk-based surveillance of Ae. albopictus populations. In 2018 a multidisciplinary group of researchers from the University of Applied Sciences and Arts of Southern Switzerland (SUPSI) has joined launching the project ALBIS (Albopictus Integrated System). The designed system focuses on the monitoring of urban catch basins, primarily on micro-climate environmental sensing, data transmission, data acquisition and data dissemination. The gathered data are the input for an empirical machine learning model for the prediction of spatial and temporal distribution of the Ae. albopictus. The first real time monitoring tests are in progress in the pilot area in the city of Lugano in the Canton Ticino. Fully functional prototypes have been engineered by the Institute of Earth Science in collaboration with a local electronics manufacturer (TECinvent) combined with the Open Source istSOS OGC Sensor Observation Service software for data acquisition and dissemination, and in the first tests cases have demonstrated good quality in terms of energy efficiency, data quality and data transmission reliability. The first results demonstrated that temperature in catch basins can be different from outside temperature that is detected by traditional terrain measures: in February 2018 during a period of cold air temperature in Canton Ticino of down to -8°C, the prototype sensor monitoring the catch basins' wall surface shows temperatures up to 6°C higher. Considering that one of the Ae. albopictus establishment thresholds is to have a mean January temperature of >0°C to allow egg overwintering, taking into account this micro-climate environments could lead to more realistic predictions.


2021 ◽  
Author(s):  
Chloé Duffaut ◽  
Nathalie Frascaria-Lacoste ◽  
Pierre-Antoine Versini

<p>Hydro-meteorological risks are increasing and this could be due to global changes. These risks are particularly important in the urban context where most human beings live. Indeed, the impervious surfaces present in cities increase the risk of flooding, for example. Nature-Based Solutions can help to reduce these risks by creating permeable soils or storing water while promoting biodiversity. In this context, it is essential to understand what hinders the development and sustainability of these Nature-based Solutions in the city and what could help to deploy them on a large scale. For this purpose, various professionals working on Nature-Based Solutions in the city in France, were interviewed between 2020 and 2021, both in the academic and operational sectors, or even at the interface between the two: researchers in ecology or hydrology, IUCN (International Union for Conservation of Nature) project manager, project managers at the Regional Biodiversity Agency, director and natural environment manager of a watershed union, agro-economists engineer among others. They were asked what are the barriers and potential opportunities for Nature-Based Solutions implementation and sustainability in city. By analysing their answers, it emerges that the obstacles are more often cultural, political or financial than technical. The potential levers often mentioned are education and awareness-raising at all levels, especially for elected officials and the general public. Regulations such as the PLU (Local Urban Plan) and new funding for more natural spaces in the city also seem to be means of promoting Nature-based Solutions in urban areas. These interviews with diverse professionals directly involved in Nature-Based Solutions in cities allow to give real courses of action to be taken to democratize these Solutions throughout the French territory, or even internationally, and therefore ultimately reduce the risks of hydro-meteorology. This is one of the objectives of the French ANR project EVNATURB (Assessment of ecosystem performance of a renaturation of the urban environment), in which this study has been carried out.</p>


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 810 ◽  
Author(s):  
Antonio Barragán-Escandón ◽  
Esteban Zalamea-León ◽  
Julio Terrados-Cepeda

Previous research has assessed the potential of solar energy against possible demand; however, the sustainability issues associated with the use of large-scale photovoltaic deployment in urban areas have not been jointly established. In this paper, the impact of photovoltaic energy in the total urban energy mix is estimated using a series of indicators that consider the economic, environmental and social dimensions. These indicators have been previously applied at the country level; the main contribution of this research is applying them at the urban level to the city of Cuenca, Ecuador. Cuenca is close to the equatorial line and at a high altitude, enabling this area to reach the maximum self-supply index because of the high irradiation levels and reduced demand. The solar potential was estimated using a simple methodology that applies several indexes that were proven reliable in a local context considering this particular sun path. The results demonstrate that the solar potential can meet the electric power demand of this city, and only the indicator related to employment is positive and substantially affected. The indicators related to the price of energy, emissions and fossil fuel dependency do not change significantly, unless a fuel-to-electricity transport system conversions take place.


2019 ◽  
Vol 11 (12) ◽  
pp. 1470 ◽  
Author(s):  
Nan Xia ◽  
Liang Cheng ◽  
ManChun Li

Urban areas are essential to daily human life; however, the urbanization process also brings about problems, especially in China. Urban mapping at large scales relies heavily on remote sensing (RS) data, which cannot capture socioeconomic features well. Geolocation datasets contain patterns of human movement, which are closely related to the extent of urbanization. However, the integration of RS and geolocation data for urban mapping is performed mostly at the city level or finer scales due to the limitations of geolocation datasets. Tencent provides a large-scale location request density (LRD) dataset with a finer temporal resolution, and makes large-scale urban mapping possible. The objective of this study is to combine multi-source features from RS and geolocation datasets to extract information on urban areas at large scales, including night-time lights, vegetation cover, land surface temperature, population density, LRD, accessibility, and road networks. The random forest (RF) classifier is introduced to deal with these high-dimension features on a 0.01 degree grid. High spatial resolution land cover (LC) products and the normalized difference built-up index from Landsat are used to label all of the samples. The RF prediction results are evaluated using validation samples and compared with LC products for four typical cities. The results show that night-time lights and LRD features contributed the most to the urban prediction results. A total of 176,266 km2 of urban areas in China were extracted using the RF classifier, with an overall accuracy of 90.79% and a kappa coefficient of 0.790. Compared with existing LC products, our results are more consistent with the manually interpreted urban boundaries in the four selected cities. Our results reveal the potential of Tencent LRD data for the extraction of large-scale urban areas, and the reliability of the RF classifier based on a combination of RS and geolocation data.


2021 ◽  
Vol 2 ◽  
pp. 1-6
Author(s):  
Carla Garcia-Lozano ◽  
Anna Peliova ◽  
Josep Sitjar

Abstract. The positive effect of urban greenery on the city’s microclimate is well known, as is its ability to reduce the ambient temperature in urban areas. Our results show how the areas with the lowest surface temperature clearly coincide with the vegetated areas in the city of Barcelona. This phenomenon demonstrates the importance of increasing the urban greenery in large compact cities, such as the city of Barcelona, in order to regulate the local temperature and mitigate the effects of global warming on a large scale. The web map presented here can be used as a tool for decision makers to identify the warmest areas in the city of Barcelona and to increase greenery in an efficient manner.


2021 ◽  
Vol 14 (1) ◽  
pp. 6-10
Author(s):  
Horațiu Pop ◽  
Alin Grama

Abstract The paper analyses the way of design of photovoltaic systems. The objective of this paper is to study the production capacity of electrical energy and the way it is influenced by real time conditions. In order to realize some energetic models that could be implemented on a large scale and used as a model of good practice we used photovoltaic systems of 3 dimensions: 60 PV panels, 100 PV panels and 160 PV panels respectively. The present study considered the climate conditions of the city of Cluj-Napoca for 12 months. It considered the consumption profile (hourly consumption) and the period of the year (summer, winter, etc.) for 3 typical buildings. We used Matlab/Simulink software for simulations. The result is an estimation of the production of electrical energy for renewable sources and the reduction of GreenHouse Gases (GHG). The aim is to reduce both GHG and the energy consumption from conventional sources.


2015 ◽  
Vol 15 (19) ◽  
pp. 27041-27085
Author(s):  
K. Markakis ◽  
M. Valari ◽  
M. Engardt ◽  
G. Lacressonnière ◽  
R. Vautard ◽  
...  

Abstract. Ozone, PM10 and PM2.5 concentrations over Paris, France and Stockholm, Sweden were modeled at 4 and 1 \\unit{km} horizontal resolutions respectively for the present and 2050 periods employing decade-long simulations. We account for large-scale global climate change (RCP-4.5) and fine resolution bottom-up emission projections developed by local experts and quantify their impact on future pollutant concentrations. Moreover, we identify biases related to the implementation of regional scale emission projections over the study areas by comparing modeled pollutant concentrations between the fine and coarse scale simulations. We show that over urban areas with major regional contribution (e.g., the city of Stockholm) the bias due to coarse emission inventory may be significant and lead to policy misclassification. Our results stress the need to better understand the mechanism of bias propagation across the modeling scales in order to design more successful local-scale strategies. We find that the impact of climate change is spatially homogeneous in both regions, implying strong regional influence. The climate benefit for ozone (daily average and maximum) is up to −5 % for Paris and −2 % for Stockholm city. The joined climate benefit on PM2.5 and PM10 in Paris is between −10 and −5 % while for Stockholm we observe mixed trends up to 3 % depending on season and size class. In Stockholm, emission mitigation leads to concentration reductions up to 15 % for daily average and maximum ozone and 20 % for PM and through a sensitivity analysis we show that this response is entirely due to changes in emissions at the regional scale. On the contrary, over the city of Paris (VOC-limited photochemical regime), local mitigation of NOx emissions increases future ozone concentrations due to ozone titration inhibition. This competing trend between the respective roles of emission and climate change, results in an increase in 2050 daily average ozone by 2.5 % in Paris. Climate and not emission change appears to be the most influential factor for maximum ozone concentration over the city of Paris, which may be particularly interesting in a health impact perspective.


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 583 ◽  
Author(s):  
Dusan Jandacka ◽  
Daniela Durcanska

Urban air quality is continuing to deteriorate. If we want to do something about this problem, we need to know the cause of the pollution. The big problem, not only in Europe, is the high concentrations of particulate matter (PM) in the urban environment. The origin of these particles can be different, including combustion, transport, industry, natural resources, etc. Particulate matter includes a large amount of the finest PM fractions, which can remain in the air for a long time, easily enter respiratory tracks, and damage human health. Particulate matter is also produced by the abrasion of different parts of roads and vehicle fleets and from resuspension road dust, which concerns matter with larger aerodynamic diameters. For this reason, we carried out a series of measurements at various measuring stations in Žilina, Slovakia, during different measuring seasons. The main objective was to find out the diversity of particulate matter sources in Žilina. The search for the particulate matter origin was carried out by particulate matter measurements, determination of the particulate matter fraction concentrations (PM10, PM2.5, and PM1), an investigation on the effect of secondary factors on the particulate matter concentrations, chemical analyses, and multivariate statistical analyses. Varied behavior of the particulate matter with respect to the measurement station and the measurement season was found. Differences in the concentrations of investigated chemical elements contained in the PM were found. Significant changes in the concentrations of particulate matter are caused not only by primary sources (e.g., road traffic in the city of Žilina), but mainly by the negative events (combination of air pollution sources and meteorological conditions). Maximum concentrations of particulate matter PM10 were measured during the winter season at the measuring station on Komenského Street: PM10 126.2 µg/m3, PM2.5 97.7 µg/m3, and PM1 90.4 µg/m3 were obtained using the gravimetric method. The coarse fraction PM2.5-10 was mainly represented by the chemical elements Mg, Al, Si, Ca, Cr, Fe, and Ba, and the fine fraction PM2.5 was represented by the chemical elements K, S, Cd, Pb, Ni, and Zn. Road transport as a dominant source of PM10 was identified from all measurements in the city of Žilina by using the multivariate statistical methods of principal component analysis (PCA) and factor analysis (FA).


2018 ◽  
Vol 56 (4) ◽  
pp. 41-52
Author(s):  
Jarosław Kazimierczak ◽  
Piotr Kosmowski

Abstract The Nowe Centrum Łodzi project that was completed in 2007 in Łódź, Poland is one of the biggest contemporary large-scale urban (re)development projects in Europe and the largest project of this type in Central Europe. The principal goals of the mega-project in question include the regeneration of degraded post-industrial and post-railway land in the city centre of Łódź and the enhancement of competitiveness and the metropolitan position of the city. The authors seek to identify spatial and functional changes at a mezo-scale, i.e. in the so-called immediate neighbourhood of the urban regeneration megaproject (URMP), which have accompanied the implementation of the Nowe Centrum Łodzi project over the years 2013–2016. The other aim was to classify urban areas neighbouring the URMP based on features of spatial and functional transformation identified in these areas. The studies allowed the researchers to identify three categories of urban area in the immediate neighbourhood of the URMP which revealed differences in spatial and functional transformations. We indicated that the transformation of the immediate neighbourhood of the URMP involved not only the local authorities responsible for the overall improvement of the quality of public space but also other users, inter alia, residents, local urban activists, the business community, public institutions, and NGOs, that in most cases complemented efforts initiated by the Municipality. From the methodological point of view the authors use a case study including desk research, an urban planning inventory, and direct observation.


1989 ◽  
Vol 55 (518) ◽  
pp. 3178-3182
Author(s):  
Masayoshi KOBIYAMA ◽  
Seitatou FUKUSIMA ◽  
Toshihiro KOYAMA ◽  
Tadayuki MURAKAMI ◽  
Yuichi SATOH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document