scholarly journals In silico identification of off-target pesticidal dsRNA binding in honey bees (Apis mellifera)

Author(s):  
Christina L Mogren ◽  
Jonathan Gary Lundgren

Background. Pesticidal RNAs silencing critical gene function have great potential in pest management, but the benefits of this technology must be weighed against non-target organism risks. Methods. Published studies that developed pesticidal dsRNAs were collated into a database. The target gene sequences for these pesticidal RNAs were determined, and the degree of sequence homology with the honey bee genome were evaluated statistically for each. Results. We identified 101 insecticidal dsRNAs sharing high sequence homology with genomic regions in honey bees. The likelihood of off-target sequence homology increased with the parent dsRNA length. Non-target gene binding was unaffected by taxonomic relatedness of the target insect to honey bees, contrary to previous assertions. Gene groups active during honey bee development had disproportionately high sequence homology with pesticidal RNAs relative to other areas of the genome. Discussion. Although sequence homology does not itself guarantee a significant phenotypic effect in honey bees, in silico screening may help to identify appropriate experimental endpoints within a risk assessment framework for pesticidal RNAi.

2017 ◽  
Author(s):  
Christina L Mogren ◽  
Jonathan Gary Lundgren

Background. Pesticidal RNAs silencing critical gene function have great potential in pest management, but the benefits of this technology must be weighed against non-target organism risks. Methods. Published studies that developed pesticidal dsRNAs were collated into a database. The target gene sequences for these pesticidal RNAs were determined, and the degree of sequence homology with the honey bee genome were evaluated statistically for each. Results. We identified 101 insecticidal dsRNAs sharing high sequence homology with genomic regions in honey bees. The likelihood of off-target sequence homology increased with the parent dsRNA length. Non-target gene binding was unaffected by taxonomic relatedness of the target insect to honey bees, contrary to previous assertions. Gene groups active during honey bee development had disproportionately high sequence homology with pesticidal RNAs relative to other areas of the genome. Discussion. Although sequence homology does not itself guarantee a significant phenotypic effect in honey bees, in silico screening may help to identify appropriate experimental endpoints within a risk assessment framework for pesticidal RNAi.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4131 ◽  
Author(s):  
Christina L. Mogren ◽  
Jonathan Gary Lundgren

Background Pesticidal RNAs that silence critical gene function have great potential in pest management, but the benefits of this technology must be weighed against non-target organism risks. Methods Published studies that developed pesticidal double stranded RNAs (dsRNAs) were collated into a database. The target gene sequences for these pesticidal RNAs were determined, and the degree of similarity with sequences in the honey bee genome were evaluated statistically. Results We identified 101 insecticidal RNAs sharing high sequence similarity with genomic regions in honey bees. The likelihood that off-target sequences were similar increased with the number of nucleotides in the dsRNA molecule. The similarities of non-target genes to the pesticidal RNA was unaffected by taxonomic relatedness of the target insect to honey bees, contrary to previous assertions. Gene groups active during honey bee development had disproportionately high sequence similarity with pesticidal RNAs relative to other areas of the genome. Discussion Although sequence similarity does not itself guarantee a significant phenotypic effect in honey bees by the primary dsRNA, in silico screening may help to identify appropriate experimental endpoints within a risk assessment framework for pesticidal RNAi.


2007 ◽  
Vol 47 (7) ◽  
pp. 883 ◽  
Author(s):  
Rob Manning ◽  
Kate Lancaster ◽  
April Rutkay ◽  
Linda Eaton

The parasite, Nosema apis, was found to be widespread among feral populations of honey bees (Apis mellifera) in the south-west of Western Australia. The location, month of collection and whether the feral colony was enclosed in an object or exposed to the environment, all affected the presence and severity of infection. There was no significant difference in the probability of infection between managed and feral bees. However, when infected by N. apis, managed bees appeared to have a greater severity of the infection.


2021 ◽  
Vol 11 (14) ◽  
pp. 6481
Author(s):  
Marianna Martinello ◽  
Chiara Manzinello ◽  
Nicoletta Dainese ◽  
Ilenia Giuliato ◽  
Albino Gallina ◽  
...  

Member states of the European Union are required to ensure the initiation of monitoring programs to verify honey bee exposure to pesticides, where and as appropriate. Based on 620 samples of dead honey bees—42 of pollen, 183 of honey and 32 of vegetables—we highlighted the presence, as analyzed by liquid and gas chromatography coupled with tandem mass spectrometric detection, of many active substances, mainly tau-fluvalinate, piperonyl butoxide, chlorpyrifos and chlorpyrifos-methyl, permethrin and imidacloprid. Among the active substances found in analyzed matrices linked to honey bee killing incidents, 38 belong to hazard classes I and II, as methiocarb, methomyl, chlorpyrifos, cypermethrin and permethrin, thus representing a potential risk for human health. We have shown that, at different times between 2015 and 2020, during implementation of the Italian national guidelines for managing reports of bee colony mortality or depopulation associated with pesticide use, pesticide pollution events occurred that could raise concern for human health. Competent authorities could, as part of a One Health approach, exploit the information provided by existing reporting programs on honey bees and their products, in view of the close correlation to human health, animal health and ecosystem health.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Shilpi Bhatia ◽  
Saman S. Baral ◽  
Carlos Vega Melendez ◽  
Esmaeil Amiri ◽  
Olav Rueppell

Among numerous viruses that infect honey bees (Apis mellifera), Israeli acute paralysis virus (IAPV) can be linked to severe honey bee health problems. Breeding for virus resistance may improve honey bee health. To evaluate the potential for this approach, we compared the survival of IAPV infection among stocks from the U.S. We complemented the survival analysis with a survey of existing viruses in these stocks and assessing constitutive and induced expression of immune genes. Worker offspring from selected queens in a common apiary were inoculated with IAPV by topical applications after emergence to assess subsequent survival. Differences among stocks were small compared to variation within stocks, indicating the potential for improving honey bee survival of virus infections in all stocks. A positive relation between worker survival and virus load among stocks further suggested that honey bees may be able to adapt to better cope with viruses, while our molecular studies indicate that toll-6 may be related to survival differences among virus-infected worker bees. Together, these findings highlight the importance of viruses in queen breeding operations and provide a promising starting point for the quest to improve honey bee health by selectively breeding stock to be better able to survive virus infections.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Minjie Huang ◽  
Jie Dong ◽  
Haikun Guo ◽  
Minghui Xiao ◽  
Deqian Wang

Abstract Background Dinotefuran (CAS No. 165252–70-0), a neonicotinoid insecticide, has been used to protect various crops against invertebrate pests and has been associated with numerous negative sublethal effects on honey bees. Long noncoding RNAs (lncRNAs) play important roles in mediating various biological and pathological processes, involving transcriptional and gene regulation. The effects of dinotefuran on lncRNA expression and lncRNA function in the honey bee brain are still obscure. Results Through RNA sequencing, a comprehensive analysis of lncRNAs and mRNAs was performed following exposure to 0.01 mg/L dinotefuran for 1, 5, and 10 d. In total, 312 lncRNAs and 1341 mRNAs, 347 lncRNAs and 1458 mRNAs, and 345 lncRNAs and 1155 mRNAs were found to be differentially expressed (DE) on days 1, 5 and 10, respectively. Gene set enrichment analysis (GSEA) indicated that the dinotefuran-treated group showed enrichment in carbohydrate and protein metabolism and immune-inflammatory responses such as glycine, serine and threonine metabolism, pentose and glucuronate interconversion, and Hippo and transforming growth factor-β (TGF-β) signaling pathways. Moreover, the DE lncRNA TCONS_00086519 was shown by fluorescence in situ hybridization (FISH) to be distributed mainly in the cytoplasm, suggesting that it may serve as a competing endogenous RNA and a regulatory factor in the immune response to dinotefuran. Conclusion This study characterized the expression profile of lncRNAs upon exposure to neonicotinoid insecticides in young adult honey bees and provided a framework for further study of the role of lncRNAs in honey bee growth and the immune response.


Sign in / Sign up

Export Citation Format

Share Document